Skip to main content

Liver Regeneration in Health and Disease

  • Chapter
  • First Online:
Stem Cells Handbook

Abstract

In a healthy liver, the rate of cell turnover is very low; nevertheless regeneration of acutely lost modest amounts of parenchymal tissue is rapidly accomplished by the proliferation of normally quiescent hepatocytes. Hepatocytes are “primed” to enter the cell cycle by a number of cytokines and microRNAs, while many growth factors are implicated in “driving” proliferation. However, most liver disease presents as either acute liver failure or more chronic forms of injury (e.g., alcoholic fatty liver disease [AFLD], viral hepatitis, metabolic liver disease) where iterative injury has induced a state of hepatocyte senescence, thus necessitating the activation and mobilization of a potential stem cell population located within the intrahepatic biliary tree. Activation of these bipotential hepatic progenitor cells (HPCs) from the canal of Hering seems crucial for patient survival after acute forms of massive liver damage, and we are now beginning to understand the niche requirements and molecular signals that govern their cell fate. In particular, a stereotypical niche composed of myofibroblasts, macrophages, and laminin accompanies HPC expansion, and Wnt and Notch signalings seem crucial for hepatocytic and cholangiocytic differentiation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alison MR, Islam S, Lim S. Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol. 2009;217:282–98.

    Article  PubMed  CAS  Google Scholar 

  2. Kuwahara R, Kofman AV, Landis CS, et al. The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology. 2008;47:1994–2002.

    Article  PubMed  Google Scholar 

  3. Tang Y, Kitisin K, Jogunoori W, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A. 2008;105:2445–50.

    Article  PubMed  CAS  Google Scholar 

  4. Turner R, Lozoya O, Wang Y, et al. Human hepatic stem cell and maturational liver lineage biology. Hepatology. 2011;53: 1035–45.

    Article  PubMed  CAS  Google Scholar 

  5. Zajicek G, Oren R, Weinreb Jr M. The streaming liver. Liver. 1985;5:293–300.

    PubMed  CAS  Google Scholar 

  6. Furuyama K, Kawaguchi Y, Akiyama H, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43:34–41.

    Article  PubMed  CAS  Google Scholar 

  7. Alison MR, Lin WR. Hepatocyte turnover and regeneration: virtually a virtuoso performance. Hepatology. 2011;53:1393–6.

    Article  PubMed  CAS  Google Scholar 

  8. Malato Y, Naqvi S, Schürmann N, et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest. 2011;121:4850–60.

    Article  PubMed  CAS  Google Scholar 

  9. Carpentier R, Suñer RE, van Hul N, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology. 2011;141:1432–8.

    Article  PubMed  CAS  Google Scholar 

  10. Iverson SV, Comstock KM, Kundert JA, et al. Contributions of new hepatocyte lineages to liver growth, maintenance, and regeneration in mice. Hepatology. 2011;54:655–63.

    Article  PubMed  CAS  Google Scholar 

  11. Gordon GJ, Coleman WB, Hixson DC, et al. Liver regeneration in rats with retrorsine-induced hepatocellular injury proceeds through a novel cellular response. Am J Pathol. 2000;156:607–19.

    Article  PubMed  CAS  Google Scholar 

  12. Best DH, Coleman WB. Liver regeneration by small hepatocyte-like progenitor cells after necrotic injury by carbon tetrachloride in retrorsine-exposed rats. Exp Mol Pathol. 2010;89:92–8.

    Article  PubMed  CAS  Google Scholar 

  13. Fellous TG, McDonald SA, Burkert J, et al. A methodological approach to tracing cell lineage in human epithelial tissues. Stem Cells. 2009;27:1410–20.

    Article  PubMed  CAS  Google Scholar 

  14. Bralet MP, Branchereau S, Brechot C, et al. Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am J Pathol. 1994;144:896–905.

    PubMed  CAS  Google Scholar 

  15. Fabrikant JI. The kinetics of cellular proliferation in regenerating liver. J Cell Biol. 1968;36:551–65.

    Article  PubMed  CAS  Google Scholar 

  16. Wu Y, Guo F, Liu J, et al. Triple labeling with three thymidine analogs reveals a well-orchestrated regulation of hepatocyte proliferation during liver regeneration. Hepatol Res. 2011;41:1230–9.

    Article  PubMed  CAS  Google Scholar 

  17. Stöcker E, Heine WD. Regeneration of liver parenchyma under normal and pathological conditions. Beitr Pathol. 1971;144:400–8.

    PubMed  Google Scholar 

  18. Ninomiya M, Shirabe K, Terashi T, et al. Deceleration of regenerative response improves the outcome of rat with massive hepatectomy. Am J Transplant. 2010;10:1580–7.

    Article  PubMed  CAS  Google Scholar 

  19. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43(2 Suppl 1):S45–53.

    Article  PubMed  CAS  Google Scholar 

  20. Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213:286–300.

    Article  PubMed  CAS  Google Scholar 

  21. Riehle KJ, Dan YY, Campbell JS. New concepts in liver regeneration. J Gastroenterol Hepatol. 2011;26 Suppl 1:203–12.

    Article  PubMed  Google Scholar 

  22. DeAngelis RA, Markiewski MM, Kourtzelis I, et al. A complement-IL-4 regulatory circuit controls liver regeneration. J Immunol. 2012;188:641–8.

    Article  PubMed  CAS  Google Scholar 

  23. Vaquero J, Campbell JS, Haque J, et al. Toll-like receptor 4 and myeloid differentiation factor 88 provide mechanistic insights into the cause and effects of interleukin-6 activation in mouse liver regeneration. Hepatology. 2011;54:597–608.

    Article  PubMed  CAS  Google Scholar 

  24. Sgroi A, Gonelle-Gispert C, Morel P, et al. Interleukin-1 receptor antagonist modulates the early phase of liver regeneration after partial hepatectomy in mice. PLoS One. 2011;6:e25442.

    Article  PubMed  CAS  Google Scholar 

  25. Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology. 2009;137:466–81.

    Article  PubMed  Google Scholar 

  26. Ding BS, Nolan DJ, Butler JM, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature. 2010;468:310–5.

    Article  PubMed  CAS  Google Scholar 

  27. Wang L, Wang X, Xie G, et al. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats. J Clin Invest. 2012;122:1567–73.

    Article  PubMed  CAS  Google Scholar 

  28. Zhu NL, Asahina K, Wang J, et al. Hepatic stellate cell-derived delta-like homolog 1 (DLK1) protein in liver regeneration. J Biol Chem. 2012;287:10355–67.

    Article  PubMed  CAS  Google Scholar 

  29. Sirma H, Kumar M, Meena JK, et al. The promoter of human telomerase reverse transcriptase is activated during liver regeneration and hepatocyte proliferation. Gastroenterology. 2011;141: 326–37.

    Article  PubMed  CAS  Google Scholar 

  30. Song G, Sharma AD, Roll GR, et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology. 2010;51:1735–43.

    Article  PubMed  CAS  Google Scholar 

  31. Ng R, Song G, Roll GR, et al. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest. 2012;122:1097–108.

    Article  PubMed  CAS  Google Scholar 

  32. Shu J, Kren BT, Xia Z, et al. Genomewide microRNA down-regulation as a negative feedback mechanism in the early phases of liver regeneration. Hepatology. 2011;54:609–19.

    Article  PubMed  CAS  Google Scholar 

  33. Bhave VS, Paranjpe S, Bowen WC, et al. Genes inducing iPS phenotype play a role in hepatocyte survival and proliferation in vitro and liver regeneration in vivo. Hepatology. 2011;54:1360–70.

    Article  PubMed  CAS  Google Scholar 

  34. Ebrahimkhani MR, Oakley F, Murphy LB, et al. Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nat Med. 2011;17:1668–73.

    Article  PubMed  CAS  Google Scholar 

  35. Hayashi H, Sakai K, Baba H, et al. Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice. Hepatology. 2012;55:1562–73.

    Article  PubMed  CAS  Google Scholar 

  36. Riehle KJ, Campbell JS, McMahan RS, et al. Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3. J Exp Med. 2008;205:91–103.

    Article  PubMed  CAS  Google Scholar 

  37. Reddy BV, Irvine KD. The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development. 2008;135:2827–38.

    Article  PubMed  CAS  Google Scholar 

  38. Dong J, Feldmann G, Huang J, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou D, Conrad C, Xia F, et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell. 2009;16:425–38.

    Article  PubMed  CAS  Google Scholar 

  40. Song H, Mak KK, Topol L, et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A. 2010;107:1431–6.

    Article  PubMed  CAS  Google Scholar 

  41. Marshall A, Rushbrook S, Davies SE, et al. Relation between hepatocyte G1 arrest, impaired hepatic regeneration, and fibrosis in chronic hepatitis C virus infection. Gastroenterology. 2005;128:33–42.

    Article  PubMed  Google Scholar 

  42. Yang S, Koteish A, Lin H, et al. Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. Hepatology. 2004;39:403–11.

    Article  PubMed  Google Scholar 

  43. Lowes KN, Brennan BA, Yeoh GC, et al. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol. 1999;154:537–41.

    Article  PubMed  CAS  Google Scholar 

  44. Kofman AV, Morgan G, Kirschenbaum A, et al. Dose- and time-dependent oval cell reaction in acetaminophen-induced murine liver injury. Hepatology. 2005;41:1252–61.

    Article  PubMed  CAS  Google Scholar 

  45. Theise ND, Saxena R, Portmann BC, et al. The canals of Hering and hepatic stem cells in humans. Hepatology. 1999;30:1425–33.

    Article  PubMed  CAS  Google Scholar 

  46. Alison MR, Golding M, Sarraf CE, et al. Liver damage in the rat induces hepatocyte stem cells from biliary epithelial cells. Gastroenterology. 1996;110:1182–90.

    Article  PubMed  CAS  Google Scholar 

  47. Boulter L, Govaere O, Bird TG, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18:572–9.

    Article  PubMed  CAS  Google Scholar 

  48. Vig P, Russo FP, Edwards RJ, et al. The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology. 2006;43:316–24.

    Article  PubMed  Google Scholar 

  49. Endo Y, Zhang M, Yamaji S, Cang Y. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells. PLoS One. 2012;7:e31846.

    Article  PubMed  CAS  Google Scholar 

  50. Dorrell C, Erker L, Schug J, et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev. 2011;25:1193–203.

    Article  PubMed  CAS  Google Scholar 

  51. Alison MR. Characterization of the differentiation capacity of rat-derived hepatic stem cells. Semin Liver Dis. 2003;23:325–36.

    Article  PubMed  CAS  Google Scholar 

  52. Tanimizu N, Tsujimura T, Takahide K, et al. Expression of Dlk/Pref-1 defines a subpopulation in the oval cell compartment of rat liver. Gene Expr Patterns. 2004;5:209–18.

    Article  PubMed  CAS  Google Scholar 

  53. Santoni-Rugiu E, Jelnes P, Thorgeirsson SS, et al. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion. APMIS. 2005;113:876–902.

    Article  PubMed  Google Scholar 

  54. Jelnes P, Santoni-Rugiu E, Rasmussen M, et al. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology. 2007;45:1462–70.

    Article  PubMed  CAS  Google Scholar 

  55. Jung Y, Oh SH, Zheng D, et al. A potential role of somatostatin and its receptor SSTR4 in the migration of hepatic oval cells. Lab Invest. 2006;86:477–89.

    Article  PubMed  CAS  Google Scholar 

  56. Yovchev MI, Grozdanov PN, Joseph B, et al. Novel hepatic progenitor cell surface markers in the adult rat liver. Hepatology. 2007;45:139–49.

    Article  PubMed  CAS  Google Scholar 

  57. Sicklick JK, Li YX, Melhem A, et al. Hedgehog signaling maintains resident hepatic progenitors throughout life. Am J Physiol Gastrointest Liver Physiol. 2006;290:G859–70.

    Article  PubMed  CAS  Google Scholar 

  58. Rountree CB, Barsky L, Ge S, Zhu J, Senadheera S, Crooks GM. A CD133 expressing murine liver oval cell population with bi-lineage potential. Stem Cells. 2007;25:2419–29.

    Article  PubMed  CAS  Google Scholar 

  59. Ueberham E, Aigner T, Ueberham U, Gebhardt R. E-cadherin as a reliable cell surface marker for the identification of liver specific stem cells. J Mol Histol. 2007;38:359–68.

    Article  PubMed  CAS  Google Scholar 

  60. Jensen CH, Jauho EI, Santoni-Rugiu E, et al. Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. Am J Pathol. 2004;164: 1347–59.

    Article  PubMed  CAS  Google Scholar 

  61. Jakubowski A, Ambrose C, Parr M, et al. TWEAK induces liver progenitor cell proliferation. J Clin Invest. 2005;115:2330–40.

    Article  PubMed  CAS  Google Scholar 

  62. Francis H, Glaser S, Demorrow S, et al. Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol Cell Physiol. 2008;295:C499–513.

    Article  PubMed  CAS  Google Scholar 

  63. Viebahn CS, Yeoh GC. What fires prometheus? The link between inflammation and regeneration following chronic liver injury. Int J Biochem Cell Biol. 2008;40:855–73.

    Article  PubMed  CAS  Google Scholar 

  64. Strick-Marchand H, Masse GX, Weiss MC, Di Santo JP. Lymphocytes support oval cell-dependent liver regeneration. J Immunol. 2008;181:2764–71.

    PubMed  CAS  Google Scholar 

  65. Qiu Q, Hernandez JC, Dean AM, Rao PH, Darlington GJ. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells. Stem Cells Dev. 2011;20:2177–88.

    Article  PubMed  CAS  Google Scholar 

  66. Dorrell C, Erker L, Lanxon-Cookson KM, et al. Surface markers for the murine oval cell response. Hepatology. 2008;48:1282–91.

    Article  PubMed  CAS  Google Scholar 

  67. Okabe M, Tsukahara Y, Tanaka M, et al. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development. 2009;136:1951–60.

    Article  PubMed  CAS  Google Scholar 

  68. Hu M, Kurobe M, Jeong YJ, et al. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133:1579–91.

    Article  PubMed  CAS  Google Scholar 

  69. Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology. 2008;47:288–95.

    Article  PubMed  CAS  Google Scholar 

  70. Yang W, Yan HX, Chen L, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 2008;68:4287–95.

    Article  PubMed  CAS  Google Scholar 

  71. Williams JM, Oh SH, Jorgensen M, et al. The role of the Wnt family of secreted proteins in rat oval “stem” cell-based liver regeneration: Wnt1 drives differentiation. Am J Pathol. 2010;176: 2732–42.

    Article  PubMed  CAS  Google Scholar 

  72. Darwiche H, Oh SH, Steiger-Luther NC, et al. Inhibition of Notch signaling affects hepatic oval cell response in rat model of 2AAF-PH. Hepat Med. 2011;3:89–98.

    Article  PubMed  CAS  Google Scholar 

  73. Ishikawa T, Factor VM, Marquardt JU, et al. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology. 2012;55:1215–26.

    Article  PubMed  CAS  Google Scholar 

  74. Tirnitz-Parker JE, Viebahn CS, Jakubowski A, et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology. 2010;52:291–302.

    Article  PubMed  CAS  Google Scholar 

  75. Nguyen LN, Furuya MH, Wolfraim LA, et al. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. Hepatology. 2007;45:31–41.

    Article  PubMed  CAS  Google Scholar 

  76. Benhamouche S, Curto M, Saotome I, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010;24:1718–30.

    Article  PubMed  CAS  Google Scholar 

  77. Van Hul NK, Abarca-Quinones J, Sempoux C, Horsmans Y, Leclercq IA. Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology. 2009;49:1625–35.

    Article  PubMed  Google Scholar 

  78. Lorenzini S, Bird TG, Boulter L, et al. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut. 2010;59:645–54.

    Article  PubMed  Google Scholar 

  79. Kallis YN, Robson AJ, Fallowfield JA, et al. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut. 2011;60:525–33.

    Article  PubMed  CAS  Google Scholar 

  80. Pintilie DG, Shupe TD, Oh SH, Salganik SV, Darwiche H, Petersen BE. Hepatic stellate cells’ involvement in progenitor-mediated liver regeneration. Lab Invest. 2010;90:1199–208.

    Article  PubMed  CAS  Google Scholar 

  81. Paradis V, Youssef N, Dargere D, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol. 2001;32:327–32.

    Article  PubMed  CAS  Google Scholar 

  82. Ikeda H, Sasaki M, Sato Y, et al. Large cell change of hepatocytes in chronic viral hepatitis represents a senescent-related lesion. Hum Pathol. 2009;40:1774–82.

    Article  PubMed  CAS  Google Scholar 

  83. Falkowski O, An HJ, Ianus IA, et al. Regeneration of hepatocyte ‘buds’ in cirrhosis from intrabiliary stem cells. J Hepatol. 2003;39:357–64.

    Article  PubMed  CAS  Google Scholar 

  84. Lin WR, Lim SA, McDonald SA, et al. The histogenesis of regenerative nodules in human liver cirrhosis. Hepatology. 2010;51:1017–26.

    Article  PubMed  CAS  Google Scholar 

  85. Alison MR, Nicholson LJ, Lin WR. Chronic inflammation and hepatocellular carcinoma. Recent Results Cancer Res. 2011;185: 135–48.

    Article  PubMed  CAS  Google Scholar 

  86. Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest. 1994;70:6–22.

    PubMed  CAS  Google Scholar 

  87. Hixson DC, Brown J, McBride AC, Affigne S. Differentiation status of rat ductal cells and ethionine-induced hepatic carcinomas defined with surface-reactive monoclonal antibodies. Exp Mol Pathol. 2000;68:152–69.

    Article  PubMed  CAS  Google Scholar 

  88. Yamashita T, Forgues M, Wang W, et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 2008;68:1451–61.

    Article  PubMed  CAS  Google Scholar 

  89. Lee JS, Heo J, Libbrecht L, et al. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med. 2010;12:410–6.

    Article  Google Scholar 

  90. Durnez A, Verslype C, Nevens F, et al. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology. 2006;49:138–51.

    Article  PubMed  CAS  Google Scholar 

  91. Kim H, Choi GH, Na DC, et al. Human hepatocellular carcinomas with “stemness”-related marker expression: keratin 19 expression and a poor prognosis. Hepatology. 2011;54:1707–17.

    Article  PubMed  CAS  Google Scholar 

  92. Alison MR, Lim SM, Nicholson LJ. Cancer stem cells; problems for therapy? J Pathol. 2011;223:147–61.

    Article  PubMed  CAS  Google Scholar 

  93. Wang XQ, Ongkeko WM, Chen L, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 2010;52:528–39.

    Article  PubMed  CAS  Google Scholar 

  94. Lee TK, Castilho A, Cheung VC, et al. Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology. 2011;53:160–70.

    Article  PubMed  CAS  Google Scholar 

  95. Cheung ST, Cheung PF, Cheng CK, Wong NC, Fan ST. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology. 2011;140:344–55.

    Article  PubMed  CAS  Google Scholar 

  96. Yamashita T, Honda M, Nio K, et al. Oncostatin m renders epithelial cell adhesion molecule-positive liver cancer stem cells sensitive to 5-Fluorouracil by inducing hepatocytic differentiation. Cancer Res. 2010;70:4687–97.

    Article  PubMed  CAS  Google Scholar 

  97. Alison MR, Lin WR, Lim SM, Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev. 2012;38(6):589–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Alison Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science + Business Media New York

About this chapter

Cite this chapter

Alison, M.R., Islam, S. (2013). Liver Regeneration in Health and Disease. In: Sell, S. (eds) Stem Cells Handbook. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7696-2_22

Download citation

Publish with us

Policies and ethics