Skip to main content

Biotechnological Strategies for Enhancing Phytoremediation

  • Chapter
  • First Online:
Biotechnology of Crucifers

Abstract

Phytoremediation to clean up soil or sediments contaminated with metals and other pollutant compound has gained increasing attention as environmental friendly and cost effective. Achievements of the last decade suggest that genetic engineering of plants can be instrumental in improving phytoremediation. Members of the Cruciferae plant family have a key role in phytoremediation technology. Many wild crucifer species are known to hyperaccumulate heavy metals and possess genes for resistance or tolerance to the toxic effects of a wide range of metals. Many of these species are well adapted to a range of environmental conditions. Some species are tolerant to high levels of heavy metals, and there is the potential to select superior genotypes for phytoremediation. They are well suited to genetic manipulation and in vitro culture techniques and are attractive candidates for the introduction of genes aimed at phytoremediation. The use of genetic engineering to modify plants for metal uptake, transport and sequestration may open up new avenues for enhancing efficiency of phytoremediation. Metal chelator, metallothionein, phytochelatin and metal transporter genes have been transferred to plants for improved metal uptake and sequestration in crucifers. The purpose of this article is to review different biotechnological approaches to enhance phytoremediation in crucifers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway BJ (1990) Heavy metals in soil. Blackie and Son, London, pp 1–339

    Google Scholar 

  • Anamika S, Eapen S, Fulekar MH (2009) Phytoremediation of cadmium, lead and zinc by Brassica juncea L. Czern and Coss. J Appl Biosci 13:726–736

    Google Scholar 

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1998) Harvesting a crop of gold in plants. Nature 395:553–554

    CAS  Google Scholar 

  • Anonymous (2003) Phytoremediation session at the 19th annual international conference on soils, sediments, and water, phytoremediation session, Amherst, MA, USA, October 20–23, 2003. Int J Phytoremediation 5:399–404

    Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    PubMed  CAS  Google Scholar 

  • Assuncao AGL, DaCosta Martin P, De Folter S, Voolis R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24:217–226

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of insitu heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Google Scholar 

  • Bañuelos G, Terry N, Leduc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Technol 39:1771–1777

    PubMed  Google Scholar 

  • Bañuelos GS, Ajwa HA, Terry N, Zayed A (1997) Phytoremediation of selenium laden soils: a new technology. J Soil Water Conserv 52(6):426–430

    Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, vander Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    PubMed  CAS  Google Scholar 

  • Barroso C, Vega J, Gotor C (1995) A new member of the cytosolic O-acetylserine(thiol)lyase gene family in Arabidopsis thaliana. FEBS Lett 363:1–5

    PubMed  CAS  Google Scholar 

  • Bazirmakenga R, Siomard RR, Leroux GD (1995) Determination of organic acids in soil extracts by ion chromatography. Soil Biol Biochem 27:349–356

    Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal contaminated mine tailings. J Environ Qual 32:432–440

    PubMed  CAS  Google Scholar 

  • Bert V, Macnair MR, de Laguerie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methyl mercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci U S A 96:6808–6813

    PubMed  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    PubMed  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    PubMed  CAS  Google Scholar 

  • Brewer EP, Saunders JA, Angle JS, Chaney RL, McIntosh MS (1999) Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99:761–771

    CAS  Google Scholar 

  • Brooks RR (1998) General introduction. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CABI, Wallingford, pp 1–14

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Ann Rev Phytopathol 12:181–197

    CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren M, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Crameri A, Dawes G, Rodriguez E, Silver S, Stemmer WPC (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 15:436–438

    PubMed  CAS  Google Scholar 

  • Davies KL, Davies MS, Francis D (1991) The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytol 118:565–570

    CAS  Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Bio/technol 6:282–286

    CAS  Google Scholar 

  • De Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ- glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    PubMed  CAS  Google Scholar 

  • Diderjean L, Gondet L, Perkins R, Lau SMC, Schaller H, O’Keefe DP, Werck-Reickhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189

    Google Scholar 

  • Domínguez-Solís JR, López-Martín MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    PubMed  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    PubMed  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    PubMed  CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza S (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    PubMed  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species. Implication for phytoremediation. J Environ Qual 26:776–781

    CAS  Google Scholar 

  • Eide D, Broderius M, Fett JM, Guerinot ML (1996) A novel iron- regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci 93(11):5624–5628

    PubMed  CAS  Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B et al (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    PubMed  Google Scholar 

  • Escarré J, Lefebvre C, Gruber W, Lablanc M, Leport J, Riviere Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for gene PsMTA function. Plant Mol Biol 20:1019–1028

    PubMed  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    PubMed  CAS  Google Scholar 

  • Field JA, Thurman EM (1996) Glutathione conjugation and contamination transformation. Environ Sci Technol 30:1413–1418

    CAS  Google Scholar 

  • Fischerová Z, TlustoÅ¡ P, Száková J, Å ichorová K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100

    PubMed  Google Scholar 

  • Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63

    PubMed  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    PubMed  CAS  Google Scholar 

  • Fulekar MH, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8(4):529–535

    CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    PubMed  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1998) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 105:197–202

    Google Scholar 

  • Gisbert C, Clemente R, Navarro-Aviño JP, Baixauli C, Gines A, Serrano R, Walker DJ, Bernal MP (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56:19–27

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growthpromoting bacteria. Imperial College, London

    Google Scholar 

  • Glimelius K (1984) High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Plant Physiol 61:38–44

    CAS  Google Scholar 

  • Glimelius K (1999) Somatic hybridization. In: Gomez- Campo C (ed) Biology of Brassica Coenospecies. Elsevier Science, Amsterdam, pp 107–148

    Google Scholar 

  • Gong J, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A 100:10118–10123

    PubMed  CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J Biotechnol 81:45–53

    PubMed  CAS  Google Scholar 

  • Grill E (1989) Phytochelatins in plants. In: Hammer DH, Winge DR (eds) Metal ion homeostasis: molecular biology and chemistry. Alan R. Liss, New York, pp 283–300

    Google Scholar 

  • Grotz M, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of Zn transporter genes from Arabidopsis that responds to zinc deficiency. Proc Natl Acad Sci (U S A) 95:7220–7224

    CAS  Google Scholar 

  • Guerinot ML, Eide D (1999) Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 2:244–249

    PubMed  CAS  Google Scholar 

  • Guo JB, Dai XJ, Xu WZ, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    PubMed  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    PubMed  CAS  Google Scholar 

  • Heiss S, Schäfer HJ, Haag-Kerwer A, Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low-affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39:847–857

    PubMed  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    PubMed  CAS  Google Scholar 

  • Hopper JL, Parker DR (1999) Plant availability of selenate and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207

    CAS  Google Scholar 

  • Howarth JR, Domínguez-Solís JR, Gutiérrez-Alcalá G, Wray JL, Romero LC, Gotor C (2003) The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol Biol 51:589–598

    PubMed  CAS  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    PubMed  CAS  Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161(2–3):920–925

    PubMed  CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008

    CAS  Google Scholar 

  • Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and tissue cultures. Environ Sci Technol 31:266–271

    CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka H, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    PubMed  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    PubMed  CAS  Google Scholar 

  • Janssen DB, Pries F, van der Ploeg JR (1994) Genetics and biochemistry of dehalogenating enzymes. Annu Rev Microbiol 48:163–191

    PubMed  CAS  Google Scholar 

  • Jiménez-Ambriz G, Petit C, Bourrié I, Dubois S, Olivieri I, Ronce O (2007) Life history variation in the heavy metal tolerant plant Thalaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: role of gene flow, selection and phenotypic plasticity. New Phytol 173:199–215

    Google Scholar 

  • Jordan FL, Robin-Abbott M, Maier RM, Glenn EP (2002) A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environ Toxicol Chem 21:2698–2704

    PubMed  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    PubMed  CAS  Google Scholar 

  • Khan R, Bhawana P, Fulekar MH (2012) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol. doi:10.1007/s11157-012-9287-6

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Kneer R, Zenk MH (1992) Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry 31:2662–2667

    Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterization of a novel gene family of putative cyclic nucleotides and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    PubMed  Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotianatabacum L. Planta 226:1379–1387

    PubMed  CAS  Google Scholar 

  • Kotrba P, Macek T, Ruml T (1999) Heavy metal-binding peptides and proteins in plants. A review. Collect Czech Chem Commun 64:1057–1086

    CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    PubMed  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith AC (1996) Free histidine as metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Kumar NPBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 92:1232–1238

    Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219

    Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    PubMed  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    PubMed  CAS  Google Scholar 

  • Lasat MM, Ebbs SD, Kochian LV (1997) Potential for phytoextraction of 137Cs from contaminated soils. Plant Soil 195:99–106

    CAS  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP et al (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    PubMed  CAS  Google Scholar 

  • LeDuc DL, Norman T (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32:514–520

    PubMed  CAS  Google Scholar 

  • LeDuc DL, AbdelSamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76

    PubMed  CAS  Google Scholar 

  • Leopold I, Guenther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328

    CAS  Google Scholar 

  • Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Plant 97:411–419

    CAS  Google Scholar 

  • Li ZS, Szcypka M, Lu YP, Thiele DJ, Rea PA (1996) The yeast cd factor protein (Y FC1) is a vacuolar glutathione-S-conjugate pump. J Biol Chem 271:6509–6517

    PubMed  CAS  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    PubMed  CAS  Google Scholar 

  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559

    CAS  Google Scholar 

  • Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P, Petit D (1999) Zn tolerance and hyperaccumulation are genetically independent characters. Proc R Soc Lond B 266:2175–2179

    CAS  Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Valdes B, Rossini Oliva S (2005) Thallium accumulation in floral structures of Hirschfeldiaincana (L.) Lagrèze-Fossat (Brassicaceae). Bull Environ Contam Toxicol 74:1058–1064

    PubMed  CAS  Google Scholar 

  • Madejon P, Murillo JM, Maranon T, Lepp NW (2007) Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 67:20–28

    PubMed  CAS  Google Scholar 

  • Marchiol L, Asssolari S, Sacco P, Zerbi G (2004) Phytoremediation of heavy metals by canola (Brassica napus) and radish (Raphanussativus) grown on multi contaminated soil. Environ Pollut 132:21–27

    PubMed  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • McNair MR, Tilstone GH, Smith SS (2000) The genetics of metaltolerance and accumulation in higher plants. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 235–250

    Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK et al (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press/Lewis, Boca Raton

    Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J et al (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    PubMed  Google Scholar 

  • Meyer A, Fricker M (2002) Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol 130:1927–1937

    PubMed  CAS  Google Scholar 

  • Mishra D, Kar M (1974) Nickel in plant growth and metabolism. Bot Rev 40:395–452

    CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Global J Environ Res 4(3):135–150

    CAS  Google Scholar 

  • Naested H, Fennema M, Hao L, Anderson M, Janssen DB, Mundy J (1999) A bacterial haloalkane dehydrogenase gene as a negative selectable marker in Arabidopsis. Plant J 18:571–576

    PubMed  CAS  Google Scholar 

  • Neuhierl B, Thanbichler M, Lottspeich F, Böck A (1999) A family of S-methylmethionine dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    PubMed  CAS  Google Scholar 

  • Nouairi I, Ammar WB, Youssef NB, Daoud DBM, Ghorbal MH, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519

    CAS  Google Scholar 

  • Palmer CE, Keller WA (1994) In vitro culture of oilseeds. In: Vasil K, Thorpe TA (eds) Plant cell and tissue culture. Kluwer, Dordrecht, pp 413–455

    Google Scholar 

  • Palmer CE, Warwick S, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytoremediation 3:245–287

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  CAS  Google Scholar 

  • Pence HS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of metal transporter in the Zn/Cd hyperaccumulator, Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    PubMed  CAS  Google Scholar 

  • Peterson AG, Oliver DJ (2006) Leaf-targeted phytochelatin synthase in Arabidopsis thaliana. Plant Physiol Biochem 44:885–892

    PubMed  CAS  Google Scholar 

  • Picault N, Cazalé AC, Beyly A, Cuiné S, Carrier P, Luu DT et al (2006) Chloroplast targeting of phytochelatin synthase in Arabidopsis: effects on heavy metal tolerance and accumulation. Biochimie 88:1743–1750

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci 5:235–236

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    CAS  Google Scholar 

  • Pilon-Smits EA, Hwang S, Mel Lytle C, Zhu Y, Tai JC, Bravo RC et al (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460

    CAS  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GSX pumps to multi-specific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 99:727–760

    Google Scholar 

  • Reeves R, Baker A (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Robinson BH, LeBlanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    CAS  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360

    PubMed  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (1999) In vitro selection and biochemical characterization of zinc and manganese adapted callus lines in Brassica spp. Plant Sci 137:89–100

    Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    PubMed  CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    PubMed  CAS  Google Scholar 

  • Sanita-di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Expt Bot 41:105–130

    Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res 15:615–625

    PubMed  CAS  Google Scholar 

  • Schäfer HJ, Greiner S, Rausch T, Haag-Kerwer A (1997) In seedlings of the heavy metal accumulator Brassica juncea Cu2+ differentially affects transcript amounts for γ-glutamylcysteine synthetase (γ-ECS) and metallothionein (MT2). FEBS Lett 404:216–220

    PubMed  Google Scholar 

  • Schat H, Ten-Bookum WM (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229

    CAS  Google Scholar 

  • Schat H, Vooijs R (1997) Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis. New Phytol 136:489–496

    CAS  Google Scholar 

  • Schiavon M, Pittarello M, Pilon-Smits EAH, Wirtz M, Hell R, Malagoli M (2012a) Selenate and molybdate alter sulfate transport and assimilation in Brassica juncea L. Czern.: implications for phytoremediation. Environ Exp Bot 75:41–51

    CAS  Google Scholar 

  • Schiavon M, Galla G, Wirtz M, Pilon-Smits EA, Telatin V, Quaggiotti S, Hell R, Barcaccia G, Malagoli M (2012b) Transcriptome profiling of genes differentially modulated by sulfur and chromium identifies potential targets for phytoremediation and reveals a complex S-Cr interplay on sulfate transport regulation in B. juncea. J Hazard Mater 239–240:192–205

    PubMed  Google Scholar 

  • Schultz CL, Hutchinson TC (1998) Evidence for a key role for metallothionein-like protein in the copper tolerance of Deschampsia caespitosa (L.) Beauv. New Phytol 110:163–172

    Google Scholar 

  • Schnug E (1993) Physiological functions, environmental relevance of sulfurcontaining secondary metabolites. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser W (eds) Sulfur nutrition and sulfur assimilation in higher plants: regulatory agricultural, environmental aspects. SPB Academic Publishing, The Hague, pp 179–190

    Google Scholar 

  • Schnug E (1997) Significance of sulphur for the quality of domesticated plants. In: Cram WJ, De Kok LJ, Brunold C, Rennenberg H (eds) Sulphur metabolism in higher plants: molecular ecophysiological, nutritional aspects. Backhuys Publishers, Leiden, pp 109–130

    Google Scholar 

  • Selvam A, Wong JWC (2009) Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea mays. J Hazard Mater 167:170–177

    PubMed  CAS  Google Scholar 

  • Sjödin C (1992) Brassicaceae, a family well suited for modern biotechnology. Acta Agric Scand 42:197–207

    Google Scholar 

  • Steffen JC (1990) The heavy metal building peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575

    Google Scholar 

  • Stephan UW, Scholz G (1993) Nicotianamine: mediator of transport of iron and heavy metals in the phloem. Physiol Plant 88:522–529

    CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN et al (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    PubMed  CAS  Google Scholar 

  • SzczygÅ‚owska M, Piekarska A, Konieczka P, Namiesnik J (2011) Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771

    PubMed  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, vanderLelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    PubMed  CAS  Google Scholar 

  • Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M, Livi KJT et al (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    PubMed  CAS  Google Scholar 

  • Thomasini R, Vogt E, Fromenteau M, Hortensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC transporter of Arabidopsis thaliana has both glutathione conjugate and chlorophyll catabolite transporter activity. Plant J 13:773–780

    Google Scholar 

  • Thomine S, Wang RC, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Hramp genes. Proc Natl Acad Sci (U S A) 97:4991–4996

    CAS  Google Scholar 

  • Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119(1047):1056

    Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EA (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78

    PubMed  Google Scholar 

  • Vasak M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17

    PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci (U S A) 96:7110–7115

    CAS  Google Scholar 

  • Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M et al (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60

    PubMed  CAS  Google Scholar 

  • Weyens N, vanderLelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant endophyte partnership stake the challenge. Curr Opin Biotechnol 20:248–254

    PubMed  CAS  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newmanb L, vanderLelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    PubMed  CAS  Google Scholar 

  • Wijnhoven S, Leuven R, Van Der Velde G, Jungheim G, Koelemij E, De Vries F et al (2007) Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species- and location-specific characteristics. Arch Environ Contam Toxicol 52:603–613

    PubMed  CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Yang X, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic bases of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant 47:1025–1035

    CAS  Google Scholar 

  • Zaier H, Tahar G, Abelbasset L, Rawdha B, Rim G, Majda M, Souhir S, Stanley L, Chedly A (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183(1–3):609–615

    PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1178

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Fulekar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pathak, B., Khan, R., Fulekar, J., Fulekar, M.H. (2013). Biotechnological Strategies for Enhancing Phytoremediation. In: Gupta, S. (eds) Biotechnology of Crucifers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7795-2_5

Download citation

Publish with us

Policies and ethics