Skip to main content

Targeting Drugs to Cancer: A Tough Journey to the Tumor Cell

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

Chemotherapeutic agents continue to represent the preferred therapeutic option for most malignancies. Despite major therapeutic potential, their use is limited due to severe side-effects and inefficient delivery to the tumor site. In the last four decades, researchers investigated the use of nano-sized drug delivery systems (i.e., nanomedicines) for targeting of anticancer agents. Using a nano-sized macromolecule as scaffold for drug delivery to tumors is an efficient approach to improve the delivery of drugs by ameliorating biodistribution, reducing toxicity, preventing degradation, and enhancing cellular uptake. Nevertheless, in some cases, nonselective targeting is insufficient and the incorporation of a ligand moiety is required for improved accumulation of the drug in the tumor cell. This chapter discusses the different targeting strategies used for delivery of nanomedicines to cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godwin A, Bolina K, Clochard M, Dinand E, Rankin S, Simic S, Brocchini S (2001) New strategies for polymer development in pharmaceutical science – a short review. J Pharm Pharmacol 53(9):1175–1184

    CAS  PubMed  Google Scholar 

  2. Rihova B (2002) Immunomodulating activities of soluble synthetic polymer-bound drugs. Adv Drug Deliv Rev 54(5):653–674, S0169409X02000431

    CAS  PubMed  Google Scholar 

  3. Duncan R, Ringsdorf H, Satchi-Fainaro R (2006) Polymer therapeutics–polymers as drugs, drug and protein conjugates and gene delivery systems: past, present and future opportunities. J Drug Target 14(6):337–341. doi:10.1080/10611860600833856, [pii] X8184PVV71724172

    CAS  PubMed  Google Scholar 

  4. Segal E, Pan H, Ofek P, Udagawa T, Kopeckova P, Kopecek J, Satchi-Fainaro R (2009) Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One 4(4):e5233. doi:10.1371/journal.pone.0005233

    PubMed Central  PubMed  Google Scholar 

  5. Miller K, Eldar-Boock A, Polyak D, Segal E, Benayoun L, Shaked Y, Satchi-Fainaro R (2011) Antiangiogenic antitumor activity of hpma copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model. Mol Pharm 8(4):1052–1062. doi:10.1021/mp200083n

    CAS  PubMed  Google Scholar 

  6. Miller K, Clementi C, Polyak D, Eldar-Boock A, Benayoun L, Barshack I, Shaked Y, Pasut G, S-F R (2013) Poly(ethylene glycol)-paclitaxel-alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials 34(15):3795–3806

    CAS  PubMed  Google Scholar 

  7. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polymer Sci 51:135–153

    CAS  Google Scholar 

  8. Allen TM, Martin FJ (2004) Advantages of liposomal delivery systems for anthracyclines. Semin Oncol 31(6 Suppl 13):5–15

    CAS  PubMed  Google Scholar 

  9. Mayer LD, Bally MB, Loughrey H, Masin D, Cullis PR (1990) Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine l1210 and p388 tumors. Cancer Res 50(3):575–579

    CAS  PubMed  Google Scholar 

  10. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 42(5):419–436, pii: 4252

    CAS  PubMed  Google Scholar 

  11. Gabizon A, Meshorer A, Barenholz Y (1986) Comparative long-term study of the toxicities of free and liposome-associated doxorubicin in mice after intravenous administration. J Natl Cancer Inst 77(2):459–469

    CAS  PubMed  Google Scholar 

  12. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237, 0014-5793(90)81016-H

    CAS  PubMed  Google Scholar 

  13. Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068(2):133–141, doi:0005-2736(91)90201-I [pii]

    CAS  PubMed  Google Scholar 

  14. Rinella ES, Threadgill DW (2012) Efficacy of egfr inhibition is modulated by model, sex, genetic background and diet: implications for preclinical cancer prevention and therapy trials. PLoS One 7(6):e39552. doi:10.1371/journal.pone.0039552, [pii] PONE-D-10-03043

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392

    CAS  PubMed  Google Scholar 

  16. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039

    CAS  PubMed  Google Scholar 

  17. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051

    CAS  PubMed  Google Scholar 

  18. Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6(3):193–210

    CAS  PubMed  Google Scholar 

  19. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the epr effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284, S0168-3659(99)00248-5

    CAS  PubMed  Google Scholar 

  20. Jang SH, Wientjes MG, Lu D, Au JL (2003) Drug delivery and transport to solid tumors. Pharm Res 20(9):1337–1350

    CAS  PubMed  Google Scholar 

  21. Fang J, Nakamura H, Maeda H (2011) The epr effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151. doi:10.1016/j.addr.2010.04.009, [pii]: S0169-409X(10)00090-6

    CAS  PubMed  Google Scholar 

  22. Torchilin V (2011) Tumor delivery of macromolecular drugs based on the epr effect. Adv Drug Deliv Rev 63(3):131–135. doi:10.1016/j.addr.2010.03.011, [pii] S0169-409X(10)00080-3

    CAS  PubMed  Google Scholar 

  23. Duncan R (2007) Designing polymer conjugates as lysosomotropic nanomedicines. Biochem Soc Trans 35(Pt 1):56–60. doi:10.1042/BST0350056, [pii] BST0350056

    CAS  PubMed  Google Scholar 

  24. Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55(10):1261–1277, S0169409X0300108X

    CAS  PubMed  Google Scholar 

  25. Bottaro DP, Liotta LA (2003) Cancer: out of air is not out of action. Nature 423(6940):593–595. doi:10.1038/423593a 423593a

    CAS  PubMed  Google Scholar 

  26. Maeda H, Akaike T, Wu J, Noguchi Y, Sakata Y (1996) Bradykinin and nitric oxide in infectious disease and cancer. Immunopharmacology 33(1–3):222–230

    CAS  PubMed  Google Scholar 

  27. Maeda H (2001) The enhanced permeability and retention (epr) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207, S0065257100000133

    CAS  PubMed  Google Scholar 

  28. Fang J, Sawa T, Maeda H (2003) Factors and mechanism of “epr” effect and the enhanced antitumor effects of macromolecular drugs including smancs. Adv Exp Med Biol 519:29–49. doi:10.1007/0-306-47932-X_2

    CAS  PubMed  Google Scholar 

  29. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818. doi:10.1016/j.drudis.2006.07.005, [pii] S1359-6446(06)00271-6

    CAS  PubMed  Google Scholar 

  30. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on epr-effect. Eur J Pharm Biopharm 71(3):409–419. doi:10.1016/j.ejpb.2008.11.010, [pii] S0939-6411(08)00450-5

    CAS  PubMed  Google Scholar 

  31. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3(3):319–328. doi:10.1016/S1567-5769(02)00271-0, [pii] S1567-5769(02)00271-0

    CAS  PubMed  Google Scholar 

  32. Kuniyasu H, Yasui W, Pettaway CA, Yano S, Oue N, Tahara E, Fidler IJ (2001) Interferon-alpha prevents selection of doxorubicin-resistant undifferentiated-androgen-insensitive metastatic human prostate cancer cells. Prostate 49(1):19–29. doi:10.1002/pros.1114

    CAS  PubMed  Google Scholar 

  33. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. doi:10.1126/science.1104819, [pii]: 307/5706/58

    CAS  PubMed  Google Scholar 

  34. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64(11):3731–3736. doi:10.1158/0008-5472, [pii] CAN-04-0074 64/11/3731

    CAS  PubMed  Google Scholar 

  35. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974. doi:10.1038/nature04483, [pii] nature04483

    CAS  PubMed  Google Scholar 

  36. Beecken WD, Engl T, Blaheta R, Bentas W, Achilles EG, Jonas D, Shing Y, Camphausen K (2004) Angiogenesis inhibition by angiostatin, endostatin and tnp-470 prevents cyclophosphamide induced cystitis. Angiogenesis 7(1):69–73. doi:10.1023/B:AGEN.0000037334.70257.d2, Pii 5268128

    CAS  PubMed  Google Scholar 

  37. Satchi-Fainaro R, Mamluk R, Wang L, Short SM, Nagy JA, Feng D, Dvorak AM, Dvorak HF, Puder M, Mukhopadhyay D, Folkman J (2005) Inhibition of vessel permeability by tnp-470 and its polymer conjugate, caplostatin. Cancer Cell 7(3):251–261. doi:10.1016/j.ccr.2005.02.007, [pii] S1535-6108(05)00060-7

    CAS  PubMed  Google Scholar 

  38. Nagamitsu A, Greish K, Maeda H (2009) Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug smancs: cases of advanced solid tumors. Jpn J Clin Oncol 39(11):756–766. doi:10.1093/jjco/hyp074, [pii] hyp074

    PubMed  Google Scholar 

  39. Monsky WL, Fukumura D, Gohongi T, Ancukiewcz M, Weich HA, Torchilin VP, Yuan F, Jain RK (1999) Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 59(16):4129–4135

    CAS  PubMed  Google Scholar 

  40. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of tgf-beta signaling. Proc Natl Acad Sci USA 104(9):3460–3465. doi:10.1073/pnas.0611660104, [pii] 0611660104

    CAS  PubMed  Google Scholar 

  41. Scherphof GL, Dijkstra J, Spanjer HH, Derksen JT, Roerdink FH (1985) Uptake and intracellular processing of targeted and nontargeted liposomes by rat kupffer cells in vivo and in vitro. Ann N Y Acad Sci 446:368–384

    CAS  PubMed  Google Scholar 

  42. Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (mend) for gene delivery to tumours based on the epr effect: a strategy for overcoming the peg dilemma. Adv Drug Deliv Rev 63(3):152–160. doi:10.1016/j.addr.2010.09.001, [pii] S0169-409X(10)00179-1

    CAS  PubMed  Google Scholar 

  43. Mishra S, Webster P, Davis ME (2004) Pegylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83(3):97–111

    CAS  PubMed  Google Scholar 

  44. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H (2006) Injection of pegylated liposomes in rats elicits peg-specific igm, which is responsible for rapid elimination of a second dose of pegylated liposomes. J Control Release 112(1):15–25. doi:10.1016/j.jconrel.2006.01.005, [pii]: S0168-3659(06)00037-X

    CAS  PubMed  Google Scholar 

  45. Ishida T, Kiwada H (2008) accelerated blood clearance (abc) phenomenon induced by administration of pegylated liposome. Yakugaku Zasshi 128(2):233–243, pii JST.JSTAGE/yakushi/128.233

    CAS  PubMed  Google Scholar 

  46. Shiraishi K, Hamano M, Ma H, Kawano K, Maitani Y, Aoshi T, Ishii KJ, Yokoyama M (2013) Hydrophobic blocks of peg-conjugates play a significant role in the accelerated blood clearance (abc) phenomenon. J Control Release 165(3):183–190. doi:10.1016/j.jconrel.2012.11.016, [pii] S0168-3659(12)00813-9

    CAS  PubMed  Google Scholar 

  47. Eldar-Boock A, Miller K, Sanchis J, Lupu R, Vicent MJ, Satchi-Fainaro R (2011) Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials 32(15):3862–3874. doi:10.1016/j.biomaterials.2011.01.073, [pii]:S0142-9612(11)00119-0

    CAS  PubMed  Google Scholar 

  48. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274. doi:10.1126/science.1133427, [pii] 1133427

    PubMed  Google Scholar 

  49. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113. doi:10.1126/science.1145720, 1145720

    CAS  PubMed  Google Scholar 

  50. Sellers WR (2011) A blueprint for advancing genetics-based cancer therapy. Cell 147(1):26–31. doi:10.1016/j.cell.2011.09.016, [pii] S0092-8674(11)01074-9

    CAS  PubMed  Google Scholar 

  51. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769. doi:10.1038/sj.clpt.6100400, [pii]: 6100400

    CAS  PubMed  Google Scholar 

  52. Gaspar R, Duncan R (2009) Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev 61(13):1220–1231. doi:10.1016/j.addr.2009.06.003, [pii]: S0169-409X(09)00243-9

    CAS  PubMed  Google Scholar 

  53. Sanchis J, Canal F, Lucas R, Vicent MJ (2010) Polymer-drug conjugates for novel molecular targets. Nanomedicine (Lond) 5(6):915–935. doi:10.2217/nnm.10.71

    CAS  Google Scholar 

  54. Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104(1):29–45. doi:10.1016/j.pharmthera.2004.08.001, [pii]: S0163-7258(04)00105-6

    CAS  PubMed  Google Scholar 

  55. Lampson LA (2009) Targeted therapy for neuro-oncology: reviewing the menu. Drug Discov Today 14(3–4):185–191. doi:10.1016/j.drudis.2008.11.003, [pii]: S1359-6446(08)00401-7

    CAS  PubMed  Google Scholar 

  56. Chekhonin VP, Baklaushev VP, Yusubalieva GM, Belorusova AE, Gulyaev MV, Tsitrin EB, Grinenko NF, Gurina OI, Pirogov YA (2012) Targeted delivery of liposomal nanocontainers to the peritumoral zone of glioma by means of monoclonal antibodies against gfap and the extracellular loop of cx43. Nanomedicine 8(1):63–70. doi:10.1016/j.nano.2011.05.011, [pii]: S1549-9634(11)00183-3

    CAS  PubMed  Google Scholar 

  57. Sharpe MA, Marcano DC, Berlin JM, Widmayer MA, Baskin DS, Tour JM (2012) Antibody-targeted nanovectors for the treatment of brain cancers. ACS Nano 6(4):3114–3120. doi:10.1021/nn2048679

    CAS  PubMed  Google Scholar 

  58. Yan H, Wang L, Wang J, Weng X, Lei H, Wang X, Jiang L, Zhu J, Lu W, Wei X, Li C (2012) Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano 6(1):410–420. doi:10.1021/nn203749v

    CAS  PubMed  Google Scholar 

  59. Huynh GH, Deen DF, Szoka FC Jr (2006) Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 110(2):236–259. doi:10.1016/j.jconrel.2005.09.053, [pii]: S0168-3659(05)00527-4

    CAS  PubMed  Google Scholar 

  60. Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA 103(14):5567–5572. doi:10.1073/pnas.0509425103, 0509425103

    CAS  PubMed  Google Scholar 

  61. Ong BY, Ranganath SH, Lee LY, Lu F, Lee HS, Sahinidis NV, Wang CH (2009) Paclitaxel delivery from plga foams for controlled release in post-surgical chemotherapy against glioblastoma multiforme. Biomaterials 30(18):3189–3196. doi:10.1016/j.biomaterials.2009.02.030, [pii]: S0142-9612(09)00226-9

    CAS  PubMed  Google Scholar 

  62. Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24(9):1733–1744. doi:10.1007/s11095-007-9324-2

    CAS  PubMed  Google Scholar 

  63. Pardridge WM (2010) Biopharmaceutical drug targeting to the brain. J Drug Target 18(3):157–167. doi:10.3109/10611860903548354

    CAS  PubMed  Google Scholar 

  64. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068, Collaborators (231)

    Google Scholar 

  65. Du J, Bernasconi P, Clauser KR, Mani DR, Finn SP, Beroukhim R, Burns M, Julian B, Peng XP, Hieronymus H, Maglathlin RL, Lewis TA, Liau LM, Nghiemphu P, Mellinghoff IK, Louis DN, Loda M, Carr SA, Kung AL, Golub TR (2009) Bead-based profiling of tyrosine kinase phosphorylation identifies src as a potential target for glioblastoma therapy. Nat Biotechnol 27(1):77–83. doi:10.1038/nbt.1513, [pii]: nbt.1513

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60(5):1383–1387

    CAS  PubMed  Google Scholar 

  67. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1(1):44–51

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK, Huang HJ (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 91(16):7727–7731

    CAS  PubMed  Google Scholar 

  69. Li B, Yuan M, Kim IA, Chang CM, Bernhard EJ, Shu HK (2004) Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/akt pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23(26):4594–4602. doi:10.1038/sj.onc.1207602, [pii]1207602

    CAS  PubMed  Google Scholar 

  70. Weissenberger J, Steinbach JP, Malin G, Spada S, Rulicke T, Aguzzi A (1997) Development and malignant progression of astrocytomas in gfap-v-src transgenic mice. Oncogene 14(17):2005–2013. doi:10.1038/sj.onc.1201168

    CAS  PubMed  Google Scholar 

  71. Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, Tandon A, Fomchenko EI, Oka H, Levine RL, Fujii K, Ladanyi M, Holland EC (2010) Pdgfra gene rearrangements are frequent genetic events in pdgfra-amplified glioblastomas. Genes Dev 24(19):2205–2218. doi:10.1101/gad.1972310, [pii] 24/19/2205

    CAS  PubMed  Google Scholar 

  72. Lustig R (2006) Long term responses with cetuximab therapy in glioblastoma multiforme. Cancer Biol Ther 5(9):1242–1243. doi:3420 [pii]

    Google Scholar 

  73. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to egfr kinase inhibitors. N Engl J Med 353(19):2012–2024. doi:10.1056/NEJMoa051918, [pii]: 353/19/2012

    CAS  PubMed  Google Scholar 

  74. Neyns B, Sadones J, Joosens E, Bouttens F, Verbeke L, Baurain JF, D'Hondt L, Strauven T, Chaskis C, In't Veld P, Michotte A, De Greve J (2009) Stratified phase ii trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol 20(9):1596–1603. doi:10.1093/annonc/mdp032, [pii]: mdp032

    CAS  PubMed  Google Scholar 

  75. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM (2004) Discovery of n-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (bms-354825), a dual src/abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47(27):6658–6661. doi:10.1021/jm049486a

    CAS  PubMed  Google Scholar 

  76. Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X (2012) Anti-glioblastoma efficacy and safety of paclitaxel-loading angiopep-conjugated dual targeting peg-pcl nanoparticles. Biomaterials 33(32):8167–8176. doi:10.1016/j.biomaterials.2012.07.046, [pii] S0142-9612 (12)00841-1

    CAS  PubMed  Google Scholar 

  77. Huang S, Li J, Han L, Liu S, Ma H, Huang R, Jiang C (2011) Dual targeting effect of angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 32(28):6832–6838. doi:10.1016/j.biomaterials.2011.05.064, [pii]: S0142-9612(11)00635-1

    CAS  PubMed  Google Scholar 

  78. Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, Qian Y, Sun X, Jiang X (2012) The targeted delivery of anticancer drugs to brain glioma by pegylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 33(11):3324–3333. doi:10.1016/j.biomaterials.2012.01.025, [pii]: S0142-9612(12)00044-0

    CAS  PubMed  Google Scholar 

  79. Lopes MB, Bogaev CA, Gonias SL, VandenBerg SR (1994) Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein is increased in reactive and neoplastic glial cells. FEBS Lett 338(3):301–305. doi:0014-5793(94)80288-2 [pii]

    Google Scholar 

  80. Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Gabathuler R, Castaigne JP, Beliveau R (2008) Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem 106(4):1534–1544. doi:10.1111/j.1471-4159.2008.05492.x, [pii]: JNC5492

    CAS  PubMed  Google Scholar 

  81. Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C (2009) Gene delivery targeted to the brain using an angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30(36):6976–6985. doi:10.1016/j.biomaterials.2009.08.049, [pii]: S0142-9612(09)00912-0

    CAS  PubMed  Google Scholar 

  82. Desai A, Vyas T, Amiji M (2008) Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J Pharm Sci 97(7):2745–2756. doi:10.1002/jps.21182

    CAS  PubMed  Google Scholar 

  83. Postma TJ, Heimans JJ, Luykx SA, van Groeningen CJ, Beenen LF, Hoekstra OS, Taphoorn MJ, Zonnenberg BA, Klein M, Vermorken JB (2000) A phase ii study of paclitaxel in chemonaive patients with recurrent high-grade glioma. Ann Oncol 11(4):409–413

    CAS  PubMed  Google Scholar 

  84. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S (1999) Chemotherapy augments trail-induced apoptosis in breast cell lines. Cancer Res 59(3):734–741

    CAS  PubMed  Google Scholar 

  85. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for trail. Science 277(5327):815–818

    CAS  PubMed  Google Scholar 

  86. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble apo2 ligand. J Clin Invest 104(2):155–162. doi:10.1172/JCI6926

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163. doi:10.1038/5517

    CAS  PubMed  Google Scholar 

  88. Prochnow N, Dermietzel R (2008) Connexons and cell adhesion: a romantic phase. Histochem Cell Biol 130(1):71–77. doi:10.1007/s00418-008-0434-7

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Oliveira R, Christov C, Guillamo JS, de Bouard S, Palfi S, Venance L, Tardy M, Peschanski M (2005) Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol 6(1):7. doi:10.1186/1471-2121-6-7, [pii]: 1471-2121-6-7

    PubMed Central  PubMed  Google Scholar 

  90. Chekhonin VP, Baklaushev VP, Yusubalieva GM, Gurina OI (2009) Targeted transport of 125i-labeled antibody to gfap and amvb1 in an experimental rat model of c6 glioma. J Neuroimmune Pharmacol 4(1):28–34. doi:10.1007/s11481-008-9123-5

    PubMed  Google Scholar 

  91. Bates DC, Sin WC, Aftab Q, Naus CC (2007) Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55(15):1554–1564. doi:10.1002/glia.20569

    PubMed  Google Scholar 

  92. Zhang XX, Eden HS, Chen X (2012) Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release 159(1):2–13. doi:10.1016/j.jconrel.2011.10.023, [pii]: S0168-3659(11)00995-3

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Gu G, Xia H, Hu Q, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, Chen H, Gao X, Chen J (2013) Peg-co-pcl nanoparticles modified with mmp-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 34(1):196–208, 10.1016/j.biomaterials.2012.09.044 S0142-9612(12)01052-6 [pii]

    CAS  PubMed  Google Scholar 

  94. Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999) Gelatinase-a (mmp-2), gelatinase-b (mmp-9) and membrane type matrix metalloproteinase-1 (mt1-mmp) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79(11–12):1828–1835. doi:10.1038/sj.bjc.6690291

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Wang M, Wang T, Liu S, Yoshida D, Teramoto A (2003) The expression of matrix metalloproteinase-2 and -9 in human gliomas of different pathological grades. Brain Tumor Pathol 20(2):65–72

    PubMed  Google Scholar 

  96. Kager L, Zoubek A, Potschger U, Kastner U, Flege S, Kempf-Bielack B, Branscheid D, Kotz R, Salzer-Kuntschik M, Winkelmann W, Jundt G, Kabisch H, Reichardt P, Jurgens H, Gadner H, Bielack SS (2003) Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 21(10):2011–2018. doi:10.1200/JCO.2003.08.132, [pii] JCO.2003.08.132

    PubMed  Google Scholar 

  97. Low SA, Kopecek J (2012) Targeting polymer therapeutics to bone. Adv Drug Deliv Rev 64(12):1189–1204. doi:10.1016/j.addr.2012.01.012, [pii]: S0169-409X(12)00015-4

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Saad F, Lipton A (2010) Src kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer. Cancer Treat Rev 36(2):177–184. doi:10.1016/j.ctrv.2009.11.005, [pii]: S0305-7372(09)00179-0

    CAS  PubMed  Google Scholar 

  99. Lawson MA, Xia Z, Barnett BL, Triffitt JT, Phipps RJ, Dunford JE, Locklin RM, Ebetino FH, Russell RG (2010) Differences between bisphosphonates in binding affinities for hydroxyapatite. J Biomed Mater Res B Appl Biomater 92(1):149–155. doi:10.1002/jbm.b.31500

    CAS  PubMed  Google Scholar 

  100. Jahnke W, Henry C (2010) An in vitro assay to measure targeted drug delivery to bone mineral. ChemMedChem 5(5):770–776. doi:10.1002/cmdc.201000016

    CAS  PubMed  Google Scholar 

  101. Ziebart T, Pabst A, Klein MO, Kammerer P, Gauss L, Brullmann D, Al-Nawas B, Walter C (2011) Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin Oral Investig 15(1):105–111. doi:10.1007/s00784-009-0365-2

    PubMed  Google Scholar 

  102. Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63(11):1567–1575. doi:10.1016/j.joms.2005.07.010, [pii] S0278-2391(05)01187-0

    PubMed  Google Scholar 

  103. Miller K, Erez R, Segal E, Shabat D, Satchi-Fainaro R (2009) Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew Chem Int Ed Engl 48(16):2949–2954. doi:10.1002/anie.200805133

    CAS  PubMed  Google Scholar 

  104. Segal E, Pan H, Benayoun L, Kopeckova P, Shaked Y, Kopecek J, Satchi-Fainaro R (2011) Enhanced anti-tumor activity and safety profile of targeted nano-scaled hpma copolymer-alendronate-tnp-470 conjugate in the treatment of bone malignances. Biomaterials 32(19):4450–4463. doi:10.1016/j.biomaterials.2011.02.059, [pii] S0142-9612(11)00236-5

    CAS  PubMed  Google Scholar 

  105. Bhargava P, Marshall JL, Rizvi N, Dahut W, Yoe J, Figuera M, Phipps K, Ong VS, Kato A, Hawkins MJ (1999) A phase i and pharmacokinetic study of tnp-470 administered weekly to patients with advanced cancer. Clin Cancer Res 5(8):1989–1995

    CAS  PubMed  Google Scholar 

  106. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176, S0092-8674(00)81569-X

    CAS  PubMed  Google Scholar 

  107. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to trance/rankl. Proc Natl Acad Sci USA 95(7):3597–3602

    CAS  PubMed  Google Scholar 

  108. Tsutsumi R, Xie C, Wei X, Zhang M, Zhang X, Flick LM, Schwarz EM, O'Keefe RJ (2009) Pge2 signaling through the ep4 receptor on fibroblasts upregulates rankl and stimulates osteolysis. J Bone Miner Res 24(10):1753–1762. doi:10.1359/jbmr.090412

    CAS  PubMed  Google Scholar 

  109. Tsai HY, Lin HY, Fong YC, Wu JB, Chen YF, Tsuzuki M, Tang CH (2008) Paeonol inhibits rankl-induced osteoclastogenesis by inhibiting erk, p38 and nf-kappab pathway. Eur J Pharmacol 588(1):124–133. doi:10.1016/j.ejphar.2008.04.024, [pii] S0014-2999(08)00442-1

    CAS  PubMed  Google Scholar 

  110. Mayahara K, Yamaguchi A, Takenouchi H, Kariya T, Taguchi H, Shimizu N (2012) Osteoblasts stimulate osteoclastogenesis via rankl expression more strongly than periodontal ligament cells do in response to pge(2). Arch Oral Biol 57(10):1377–1384. doi:10.1016/j.archoralbio.2012.07.009, [pii] S0003-9969(12)00251-8

    CAS  PubMed  Google Scholar 

  111. Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N (2009) Ep2 and ep4 receptors differentially mediate mapk pathways underlying anabolic actions of prostaglandin e2 on bone formation in rat calvaria cell cultures. Bone 44(6):1177–1185. doi:10.1016/j.bone.2009.02.010, [pii] S8756-3282(09)00450-5

    CAS  PubMed  Google Scholar 

  112. Li M, Ke HZ, Qi H, Healy DR, Li Y, Crawford DT, Paralkar VM, Owen TA, Cameron KO, Lefker BA, Brown TA, Thompson DD (2003) A novel, non-prostanoid ep2 receptor-selective prostaglandin e2 agonist stimulates local bone formation and enhances fracture healing. J Bone Miner Res 18(11):2033–2042. doi:10.1359/jbmr.2003.18.11.2033

    CAS  PubMed  Google Scholar 

  113. Gil L, Han Y, Opas EE, Rodan GA, Ruel R, Seedor JG, Tyler PC, Young RN (1999) Prostaglandin e2-bisphosphonate conjugates: potential agents for treatment of osteoporosis. Bioorg Med Chem 7(5):901–919, S0968-0896(99)00045-0 [pii]

    CAS  PubMed  Google Scholar 

  114. Kamolratanakul P, Hayata T, Ezura Y, Kawamata A, Hayashi C, Yamamoto Y, Hemmi H, Nagao M, Hanyu R, Notomi T, Nakamoto T, Amagasa T, Akiyoshi K, Noda M (2011) Nanogel-based scaffold delivery of prostaglandin e(2) receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice. Arthritis Rheum 63(4):1021–1033. doi:10.1002/art.30151

    CAS  PubMed  Google Scholar 

  115. Miller SC, Pan H, Wang D, Bowman BM, Kopeckova P, Kopecek J (2008) Feasibility of using a bone-targeted, macromolecular delivery system coupled with prostaglandin e(1) to promote bone formation in aged, estrogen-deficient rats. Pharm Res 25(12):2889–2895. doi:10.1007/s11095-008-9706-0

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, Weinstein RS, O'Brien CA, Manolagas SC, Jilka RL (2003) Proteasomal degradation of runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278(50):50259–50272. doi:10.1074/jbc.M307444200, [pii] M307444200

    CAS  PubMed  Google Scholar 

  117. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent pth. Bone 40(6):1434–1446. doi:10.1016/j.bone.2007.03.017, [pii] S8756-3282(07)00173-1

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Snedecor SJ, Carter JA, Kaura S, Botteman MF (2012) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a cost-effectiveness analysis. J Med Econ. doi:10.3111/13696998.2012.719054

    PubMed  Google Scholar 

  119. Snedecor SJ, Carter JA, Kaura S, Botteman MF (2012) Cost-effectiveness of denosumab versus zoledronic acid in the management of skeletal metastases secondary to breast cancer. Clin Ther 34(6):1334–1349. doi:10.1016/j.clinthera.2012.04.008, [pii] S0149-2918(12)00266-4

    PubMed  Google Scholar 

  120. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108. doi:55/2/74 [pii]

    Google Scholar 

  121. Larsen JE, Cascone T, Gerber DE, Heymach JV, Minna JD (2011) Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 17(6):512–527. doi:10.1097/PPO.0b013e31823e701a, [pii] 00130404-201111000-00014

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, McIntosh J, Kurie J, Dmitrovsky E (1993) Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res 53(10 Suppl):2379–2385

    CAS  PubMed  Google Scholar 

  123. Dutu T, Michiels S, Fouret P, Penault-Llorca F, Validire P, Benhamou S, Taranchon E, Morat L, Grunenwald D, Le Chevalier T, Sabatier L, Soria JC (2005) Differential expression of biomarkers in lung adenocarcinoma: a comparative study between smokers and never-smokers. Ann Oncol 16(12):1906–1914. doi:10.1093/annonc/mdi408, [pii] mdi408

    CAS  PubMed  Google Scholar 

  124. Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Baron AE, Zeng C, Franklin WA (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21(20):3798–3807. doi:10.1200/JCO.2003.11.069, [pii] JCO.2003.11.069

    CAS  PubMed  Google Scholar 

  125. Nicholson RI, Gee JM, Harper ME (2001) Egfr and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15. doi:S0959804901002313 [pii]

    Google Scholar 

  126. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, Majem M, Lopez-Vivanco G, Isla D, Provencio M, Insa A, Massuti B, Gonzalez-Larriba JL, Paz-Ares L, Bover I, Garcia-Campelo R, Moreno MA, Catot S, Rolfo C, Reguart N, Palmero R, Sanchez JM, Bastus R, Mayo C, Bertran-Alamillo J, Molina MA, Sanchez JJ, Taron M (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361(10):958–967. doi:10.1056/NEJMoa0904554, [pii]: NEJMoa0904554

    CAS  PubMed  Google Scholar 

  127. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. doi:10.1056/NEJMoa040938 [pii] NEJMoa040938

    CAS  PubMed  Google Scholar 

  128. Lim EH, Zhang SL, Li JL, Yap WS, Howe TC, Tan BP, Lee YS, Wong D, Khoo KL, Seto KY, Tan L, Agasthian T, Koong HN, Tam J, Tan C, Caleb M, Chang A, Ng A, Tan P (2009) Using whole genome amplification (wga) of low-volume biopsies to assess the prognostic role of egfr, kras, p53, and cmet mutations in advanced-stage non-small cell lung cancer (nsclc). J Thorac Oncol 4(1):12–21. doi:10.1097/JTO.0b013e3181913e28, [pii]01243894-200901000-00003

    PubMed  Google Scholar 

  129. Sordella R, Bell DW, Haber DA, Settleman J (2004) Gefitinib-sensitizing egfr mutations in lung cancer activate anti-apoptotic pathways. Science 305(5687):1163–1167. doi:10.1126/science.1101637, [pii] 1101637

    CAS  PubMed  Google Scholar 

  130. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ (2007) Structures of lung cancer-derived egfr mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11(3):217–227. doi:10.1016/j.ccr.2006.12.017, [pii]: S1535-6108(07)00028-1

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Gomez-Roca C, Raynaud CM, Penault-Llorca F, Mercier O, Commo F, Morat L, Sabatier L, Dartevelle P, Taranchon E, Besse B, Validire P, Italiano A, Soria JC (2009) Differential expression of biomarkers in primary non-small cell lung cancer and metastatic sites. J Thorac Oncol 4(10):1212–1220. doi:10.1097/JTO.0b013e3181b44321

    PubMed  Google Scholar 

  132. Gong Y, Yao E, Shen R, Goel A, Arcila M, Teruya-Feldstein J, Zakowski MF, Frankel S, Peifer M, Thomas RK, Ladanyi M, Pao W (2009) High expression levels of total igf-1r and sensitivity of nsclc cells in vitro to an anti-igf-1r antibody (r1507). PLoS One 4(10):e7273. doi:10.1371/journal.pone.0007273

    PubMed Central  PubMed  Google Scholar 

  133. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to her2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3(5):269–280. doi:10.1038/ncponc0509, [pii]: ncponc0509

    CAS  PubMed  Google Scholar 

  134. Morgillo F, Kim WY, Kim ES, Ciardiello F, Hong WK, Lee HY (2007) Implication of the insulin-like growth factor-ir pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin Cancer Res 13(9):2795–2803. doi:10.1158/1078-0432.CCR-06-2077, [pii]: 13/9/2795

    CAS  PubMed  Google Scholar 

  135. Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X (1999) Plasma levels of insulin-like growth factor-i and lung cancer risk: a case-control analysis. J Natl Cancer Inst 91(2):151–156

    CAS  PubMed  Google Scholar 

  136. Han JY, Choi BG, Choi JY, Lee SY, Ju SY (2006) The prognostic significance of pretreatment plasma levels of insulin-like growth factor (igf)-1, igf-2, and igf binding protein-3 in patients with advanced non-small cell lung cancer. Lung Cancer 54(2):227–234. doi:10.1016/j.lungcan.2006.07.014, [pii]: S0169-5002(06)00364-3

    PubMed  Google Scholar 

  137. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E et al (1986) Insulin-like growth factor i receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5(10):2503–2512

    CAS  PubMed  Google Scholar 

  138. Tsuta K, Kozu Y, Mimae T, Yoshida A, Kohno T, Sekine I, Tamura T, Asamura H, Furuta K, Tsuda H (2012) C-met/phospho-met protein expression and met gene copy number in non-small cell lung carcinomas. J Thorac Oncol 7(2):331–339. doi:10.1097/JTO.0b013e318241655f

    PubMed  Google Scholar 

  139. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A, Barthorpe A, Blow M, Brackenbury L, Butler A, Clarke O, Cole J, Dicks E, Dike A, Drozd A, Edwards K, Forbes S, Foster R, Gray K, Greenman C, Halliday K, Hills K, Kosmidou V, Lugg R, Menzies A, Perry J, Petty R, Raine K, Ratford L, Shepherd R, Small A, Stephens Y, Tofts C, Varian J, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Knowles M, Leung SY, Louis DN, Looijenga LH, Malkowicz B, Pierotti MA, Teh B, Chenevix-Trench G, Weber BL, Yuen ST, Harris G, Goldstraw P, Nicholson AG, Futreal PA, Wooster R, Stratton MR (2004) Lung cancer: intragenic erbb2 kinase mutations in tumours. Nature 431(7008):525–526. doi:10.1038/431525b, [pii] 431525b

    CAS  PubMed  Google Scholar 

  140. Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S, Carpenter G, Gazdar AF, Muthuswamy SK, Arteaga CL (2006) Her2 kinase domain mutation results in constitutive phosphorylation and activation of her2 and egfr and resistance to egfr tyrosine kinase inhibitors. Cancer Cell 10(1):25–38. doi:10.1016/j.ccr.2006.05.023, [pii]: S1535-6108(06)00179-6

    PubMed  Google Scholar 

  141. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, Mark EJ, Batten JM, Chen H, Wilner KD, Kwak EL, Clark JW, Carbone DP, Ji H, Engelman JA, Mino-Kenudson M, Pao W, Iafrate AJ (2012) Ros1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30(8):863–870. doi:10.1200/JCO.2011.35.6345, [pii] JCO.2011.35.6345

    CAS  PubMed  Google Scholar 

  142. Baker CH, Kedar D, McCarty MF, Tsan R, Weber KL, Bucana CD, Fidler IJ (2002) Blockade of epidermal growth factor receptor signaling on tumor cells and tumor-associated endothelial cells for therapy of human carcinomas. Am J Pathol 161(3):929–938. doi:10.1016/S0002-9440(10)64253-8, [pii]: S0002-9440(10)64253-8

    CAS  PubMed  Google Scholar 

  143. DeGrendele H (2003) Epidermal growth factor receptor inhibitors, gefitinib and erlotinib (tarceva, osi-774), in the treatment of bronchioloalveolar carcinoma. Clin Lung Cancer 5(2):83–85. doi:10.1016/S1525-7304(11)70324-2, [pii]: S1525-7304(11)70324-2

    PubMed  Google Scholar 

  144. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) Egfr mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500. doi:10.1126/science.1099314, [pii] 1099314

    CAS  PubMed  Google Scholar 

  145. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn PA Jr, Varella-Garcia M (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97(9):643–655. doi:97/9/643 [pii] 10.1093/jnci/dji112

    Google Scholar 

  146. Pao W, Miller VA (2005) Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol 23(11):2556–2568. doi:10.1200/JCO.2005.07.799, [pii]: JCO.2005.07.799

    CAS  PubMed  Google Scholar 

  147. Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, Son HJ, Kim JS (2009) Antitumor activity of egfr targeted ph-sensitive immunoliposomes encapsulating gemcitabine in a549 xenograft nude mice. J Control Release 140(1):55–60. doi:10.1016/j.jconrel.2009.07.005, [pii]: S0168-3659(09)00479-9

    CAS  PubMed  Google Scholar 

  148. Molina JR, Adjei AA, Jett JR (2006) Advances in chemotherapy of non-small cell lung cancer. Chest 130(4):1211–1219, 130/4/1211 [pii] 10.1378/chest.130.4.1211

    CAS  PubMed  Google Scholar 

  149. Wang LR, Huang MZ, Xu N, Shentu JZ, Liu J, Cai J (2005) Pharmacokinetics of gemcitabine in Chinese patients with non-small-cell lung cancer. J Zhejiang Univ Sci B 6(5):446–450. doi:10.1631/jzus.2005.B0446

    PubMed Central  PubMed  Google Scholar 

  150. Liu J, Chu L, Wang Y, Duan Y, Feng L, Yang C, Wang L, Kong D (2011) Novel peptide-dendrimer conjugates as drug carriers for targeting nonsmall cell lung cancer. Int J Nanomedicine 6:59–69. doi:10.2147/IJN.S14601

    CAS  PubMed Central  Google Scholar 

  151. Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380(6572):364–366. doi:10.1038/380364a0

    CAS  PubMed  Google Scholar 

  152. Barry MA, Dower WJ, Johnston SA (1996) Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med 2(3):299–305

    CAS  PubMed  Google Scholar 

  153. Christianson DR, Ozawa MG, Pasqualini R, Arap W (2007) Techniques to decipher molecular diversity by phage display. Methods Mol Biol 357:385–406. doi:10.1385/1-59745-214-9:385, [pii]: 1-59745-214-9:385

    CAS  PubMed  Google Scholar 

  154. Deutscher SL (2010) Phage display in molecular imaging and diagnosis of cancer. Chem Rev 110(5):3196–3211. doi:10.1021/cr900317f

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Li ZJ, Cho CH (2010) Development of peptides as potential drugs for cancer therapy. Curr Pharm Des 16(10):1180–1189, BSP/CPD/E-Pub/00037

    CAS  PubMed  Google Scholar 

  156. Blanco E, Bey EA, Khemtong C, Yang SG, Setti-Guthi J, Chen H, Kessinger CW, Carnevale KA, Bornmann WG, Boothman DA, Gao J (2010) Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res 70(10):3896–3904. doi:10.1158/0008-5472.CAN-09-3995, [pii]: 0008-5472.CAN-09-3995

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Belinsky M, Jaiswal AK (1993) Nad(p)h:Quinone oxidoreductase1 (dt-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev 12(2):103–117

    CAS  PubMed  Google Scholar 

  158. Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR, Girard L, Minna JD, Bornmann WG, Gao J, Boothman DA (2007) An nqo1- and parp-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proc Natl Acad Sci USA 104(28): 11832–11837. doi:10.1073/pnas.0702176104, [pii] 0702176104

    CAS  PubMed  Google Scholar 

  159. Bentle MS, Bey EA, Dong Y, Reinicke KE, Boothman DA (2006) New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. J Mol Histol 37(5–7):203–218. doi:10.1007/s10735-006-9043-8

    CAS  PubMed  Google Scholar 

  160. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049. doi:10.1126/science.1067431, [pii] 296/5570/1046

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Prat A, Perou CM (2009) Mammary development meets cancer genomics. Nat Med 15(8):842–844. doi:10.1038/nm0809-842, [pii]: nm0809-842

    CAS  PubMed  Google Scholar 

  162. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi:10.1038/nature09807, [pii]: nature09807

    CAS  PubMed  Google Scholar 

  163. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, Abbott RM, Hoog J, Dooling DJ, Koboldt DC, Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wendl MC, McMichael JF, Magrini VJ, Cook L, McGrath SD, Vickery TL, Appelbaum E, Deschryver K, Davies S, Guintoli T, Crowder R, Tao Y, Snider JE, Smith SM, Dukes AF, Sanderson GE, Pohl CS, Delehaunty KD, Fronick CC, Pape KA, Reed JS, Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wiechert ME, Eldred JM, Peck JB, Oberkfell BJ, Lolofie JT, Du F, Hawkins AE, O'Laughlin MD, Bernard KE, Cunningham M, Elliott G, Mason MD, Thompson DM Jr, Ivanovich JL, Goodfellow PJ, Perou CM, Weinstock GM, Aft R, Watson M, Ley TJ, Wilson RK, Mardis ER (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005. doi:10.1038/nature08989, [pii]: nature08989

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, Burgues O, Lluch AM, Chen H, Hortobagyi GN, Mills GB, Meric-Bernstam F (2011) Pi3k pathway mutations and pten levels in primary and metastatic breast cancer. Mol Cancer Ther 10(6):1093–1101. doi:10.1158/1535-7163.MCT-10-1089, [pii]: 1535-7163.MCT-10-1089

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Dupont Jensen J, Laenkholm AV, Knoop A, Ewertz M, Bandaru R, Liu W, Hackl W, Barrett JC, Gardner H (2011) Pik3ca mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res 17(4):667–677. doi:10.1158/1078-0432.CCR-10-1133, [pii]: 1078-0432.CCR-10-1133

    CAS  PubMed  Google Scholar 

  166. Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P, Xing L, Hung MC, Bonfiglio T, Hicks DG, Tang P (2010) The expression patterns of er, pr, her2, ck5/6, egfr, ki-67 and ar by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl) 4:35–41

    PubMed Central  Google Scholar 

  167. Macdonald RG, Byrd JC (2003) The insulin-like growth factor ii/mannose 6-phosphate receptor: implications for igf action in breast cancer. Breast Dis 17:61–72

    CAS  PubMed  Google Scholar 

  168. Koda M, Kanczuga-Koda L, Sulkowska M, Surmacz E, Sulkowski S (2010) Relationships between hypoxia markers and the leptin system, estrogen receptors in human primary and metastatic breast cancer: effects of preoperative chemotherapy. BMC Cancer 10:320. doi:10.1186/1471-2407-10-320, [pii]: 1471-2407-10-320

    PubMed Central  PubMed  Google Scholar 

  169. Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S, Lyass O, Henderson R, Berry G, Gabizon A (2000) Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11(8):1029–1033

    CAS  PubMed  Google Scholar 

  170. Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, Brufman G, Gabizon A (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (doxil) in metastatic breast carcinoma. Cancer 89(5):1037–1047. doi:10.1002/1097-0142 (20000901)89:5<1037:AID-CNCR13>3.0.CO;2-Z [pii]

    Google Scholar 

  171. Perez AT, Domenech GH, Frankel C, Vogel CL (2002) Pegylated liposomal doxorubicin (doxil) for metastatic breast cancer: the cancer research network, inc., experience. Cancer Invest 20(Suppl 2):22–29

    CAS  PubMed  Google Scholar 

  172. Harbeck N, Pegram MD, Ruschoff J, Mobus V (2010) Targeted therapy in metastatic breast cancer: the her2/neu oncogene. Breast Care (Basel) 5(s1):3–7. doi:10.1159/000285714, [pii] 285714

    Google Scholar 

  173. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the her-2/neu oncogene. Science 235(4785):177–182

    CAS  PubMed  Google Scholar 

  174. Colombo M, Corsi F, Foschi D, Mazzantini E, Mazzucchelli S, Morasso C, Occhipinti E, Polito L, Prosperi D, Ronchi S, Verderio P (2010) Her2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: outlook and recent implications in nanomedical approaches. Pharmacol Res 62(2):150–165. doi:10.1016/j.phrs.2010.01.013, [pii] S1043-6618(10)00027-7

    CAS  PubMed  Google Scholar 

  175. Inoue S, Ding H, Portilla-Arias J, Hu J, Konda B, Fujita M, Espinoza A, Suhane S, Riley M, Gates M, Patil R, Penichet ML, Ljubimov AV, Black KL, Holler E, Ljubimova JY (2011) Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both her2/neu receptor synthesis and activity. Cancer Res 71(4):1454–1464. doi:10.1158/0008-5472.CAN-10-3093, [pii] 0008-5472.CAN-10-3093

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering rna nanodrug. Cancer Res 70(19):7553–7561. doi:10.1158/0008-5472.CAN-10-2070, [pii]: 0008-5472.CAN-10-2070

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Perey L, Hayes DF, Maimonis P, Abe M, O'Hara C, Kufe DW (1992) Tumor selective reactivity of a monoclonal antibody prepared against a recombinant peptide derived from the df3 human breast carcinoma-associated antigen. Cancer Res 52(9):2563–2568

    CAS  PubMed  Google Scholar 

  178. Osborne CK (1998) Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 51(3):227–238

    CAS  PubMed  Google Scholar 

  179. Rai S, Paliwal R, Vaidya B, Gupta PN, Mahor S, Khatri K, Goyal AK, Rawat A, Vyas SP (2007) Estrogen(s) and analogs as a non-immunogenic endogenous ligand in targeted drug/DNA delivery. Curr Med Chem 14(19):2095–2109

    CAS  PubMed  Google Scholar 

  180. Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas SP (2010) A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 10(3):343–353, [pii]: EPub-Abstract-CCDT-32

    CAS  PubMed  Google Scholar 

  181. Paliwal SR, Paliwal R, Pal HC, Saxena AK, Sharma PR, Gupta PN, Agrawal GP, Vyas SP (2012) Estrogen-anchored ph-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol Pharm 9(1):176–186. doi:10.1021/mp200439z

    CAS  PubMed  Google Scholar 

  182. Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H (2010) Egfrviii antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 70(15):6303–6312. doi:10.1158/0008-5472.CAN-10-1022, [pii] 0008-5472.CAN-10-1022

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080

    CAS  PubMed  Google Scholar 

  184. Hadjipanayis CG, Fellows-Mayle W, Deluca NA (2008) Therapeutic efficacy of a herpes simplex virus with radiation or temozolomide for intracranial glioblastoma after convection-enhanced delivery. Mol Ther 16(11):1783–1788. doi:10.1038/mt.2008.185, [pii]: mt2008185

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Bulte JW, Kraitchman DL (2004) Iron oxide mr contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499. doi:10.1002/nbm.924

    CAS  PubMed  Google Scholar 

  186. Moore A, Weissleder R, Bogdanov A Jr (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7(6):1140–1145

    CAS  PubMed  Google Scholar 

  187. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976. doi:10.1038/nbt994, [pii]: nbt994

    CAS  PubMed  Google Scholar 

  188. Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 214(2):568–574

    CAS  PubMed  Google Scholar 

  189. Zimmer C, Weissleder R, Poss K, Bogdanova A, Wright SC Jr, Enochs WS (1995) Mr imaging of phagocytosis in experimental gliomas. Radiology 197(2):533–538

    CAS  PubMed  Google Scholar 

  190. Villanueva A, Canete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, Morales Mdel P, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103. doi:10.1088/0957-4484/20/11/115103, [pii]: S0957-4484(09)98457-4

    PubMed  Google Scholar 

  191. Guthi JS, Yang SG, Huang G, Li S, Khemtong C, Kessinger CW, Peyton M, Minna JD, Brown KC, Gao J (2010) Mri-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 7(1):32–40. doi:10.1021/mp9001393

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Guan H, McGuire MJ, Li S, Brown KC (2008) Peptide-targeted polyglutamic acid doxorubicin conjugates for the treatment of alpha(v)beta(6)-positive cancers. Bioconjug Chem 19(9):1813–1821. doi:10.1021/bc800154f

    CAS  PubMed  Google Scholar 

  193. Elayadi AN, Samli KN, Prudkin L, Liu YH, Bian A, Xie XJ, Wistuba II, Roth JA, McGuire MJ, Brown KC (2007) A peptide selected by biopanning identifies the integrin alphavbeta6 as a prognostic biomarker for nonsmall cell lung cancer. Cancer Res 67(12):5889–5895. doi:10.1158/0008-5472.CAN-07-0245, [pii]: 67/12/5889

    CAS  PubMed  Google Scholar 

  194. Ahmed N, Riley C, Rice GE, Quinn MA, Baker MS (2002) Alpha(v)beta(6) integrin-a marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem 50(10):1371–1380

    CAS  PubMed  Google Scholar 

  195. Arihiro K, Kaneko M, Fujii S, Inai K, Yokosaki Y (2000) Significance of alpha 9 beta 1 and alpha v beta 6 integrin expression in breast carcinoma. Breast Cancer 7(1):19–26

    CAS  PubMed  Google Scholar 

  196. Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, Weinreb PH, Fleuren GJ (2007) Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol 212(3):316–324. doi:10.1002/path.2168

    CAS  PubMed  Google Scholar 

  197. Jones J, Watt FM, Speight PM (1997) Changes in the expression of alpha v integrins in oral squamous cell carcinomas. J Oral Pathol Med 26(2):63–68

    CAS  PubMed  Google Scholar 

  198. Kawashima A, Tsugawa S, Boku A, Kobayashi M, Minamoto T, Nakanishi I, Oda Y (2003) Expression of alphav integrin family in gastric carcinomas: increased alphavbeta6 is associated with lymph node metastasis. Pathol Res Pract 199(2):57–64

    CAS  PubMed  Google Scholar 

  199. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, mri-ultrasensitive drug delivery systems. Nano Lett 6(11):2427–2430. doi:10.1021/nl061412u

    CAS  PubMed  Google Scholar 

  200. Fu A, Wilson RJ, Smith BR, Mullenix J, Earhart C, Akin D, Guccione S, Wang SX, Gambhir SS (2012) Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 6(8):6862–6869. doi:10.1021/nn301670a

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164. doi:10.1016/0092-8674(94)90007-8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Satchi-Fainaro research laboratory is partially supported by The Association for International Cancer Research (AICR), German-Israel Foundation (GIF), The Marguerite Stolz Research Fund for outstanding faculty, Rimonim Consortium and the MAGNET Program of the Office of the Chief Scientist of the Israel Ministry of Industry, Trade & Labor, THE ISRAEL SCIENCE FOUNDATION (Grant No. 1309/10), the United States-Israel Binational Science Foundation (Grant No. 2007347), Swiss Bridge Award, and by grants from the Israeli National Nanotechnology Initiative (INNI), Focal Technology Area (FTA) program: Nanomedicine for Personalized Theranostics, and by The Leona M. and Harry B. Helmsley Nanotechnology Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronit Satchi-Fainaro Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferber, S., Tiram, G., Satchi-Fainaro, R. (2013). Targeting Drugs to Cancer: A Tough Journey to the Tumor Cell. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_19

Download citation

Publish with us

Policies and ethics