Skip to main content

Mutant Resources for Functional Analysis of the Rice Genome

  • Chapter
  • First Online:
Genetics and Genomics of Rice

Abstract

In the past 15 years a large international effort of generation of mutant collections has been accomplished in rice, the model plant for cereals and grasses. Physical and chemical mutagenesis as well as insertion mutagenesis using Agrobacterium T-DNA, endogenous Tos17 retro-element, and maize transposon systems have been used to create lesions in the 39,000 non-transposable genes annotated in the rice genome. Nowadays, 72 % of the rice genes have at least one sequence-indexed insert while 22 % have three, allelic, sequence-indexed inserts. Despite their yet incomplete coverage, these resources have already been instrumental in unraveling the function of numerous genes underlying important developmental and physiological traits through forward or reverse genetics strategies. Together with sequence-specific inactivation approaches (RNA interference and nuclease-based gene editing), mutant collections will contribute to the elucidation of the function of all agronomically important genes in rice by year 2020, an objective shared by the rice community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, Fumasoni I, Michel C, Paccanaro A, Guiderdoni E, Schaffrath U, Morel J-B, Piffanelli P, Faivre-Rampant O (2012) OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Mol Plant Pathol 13:828ā€“841

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Agrawal G, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59:125ā€“135

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol 125:1248ā€“1257

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. An SY, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han SK, Kim SJ, Yang JW, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam JM, Kim SR, Park PB, Park KY, Kim WT, Choe S, Lee CB, An GH (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040ā€“2047

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Anukul N, Ramos R, Mehrshahi P, Castelazo A, Parker H, DiĆ©vart A, Lanau N, Mieulet D, Tucker G, Guiderdoni E, Barrett D, Bennett M (2010) Folate polyglutamylation is required for rice seed development. Rice 3:181ā€“193

    ArticleĀ  Google ScholarĀ 

  6. Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The ā€œinner circleā€ of the cereal genomes. Curr Opin Plant Biol 12:119ā€“125

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Bougourd S, Marrison J, Haseloff J (2000) An aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos. Plant J 24:543ā€“550

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401ā€“415

    PubMedĀ  CASĀ  Google ScholarĀ 

  9. Bruce M, Hess A, Bai J, Mauleon R, Diaz MG, Sugiyama N, Bordeos A, Wang G-L, Leung H, Leach J (2009) Detection of genomic deletions in rice using oligonucleotide microarrays. BMC Genomics 10:129

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Chang Y, Gong L, Yuan W, Li X, Chen G, Li X, Zhang Q, Wu C (2009) Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiol 151:2162ā€“2173

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Chen C, Fan C, Gao M, Zhu H (2009) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol 149:306ā€“317

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36:105ā€“113

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Cheng Z, Buell CR, Wing RA, Gu M, Jiang J (2001) Toward a cytological characterization of the rice genome. Genome Res 11:2133ā€“2141

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Chern C-G, Fan M-J, Yu S-M, Hour A-L, Lu P-C, Lin Y-C, Wei F-J, Huang S-C, Chen S, Lai M-H, Tseng C-S, Yen H-M, Jwo W-S, Wu C-C, Yang T-L, Li L-S, Kuo Y-C, Li S-M, Li C-P, Wey C-K, Trisiriroj A, Lee H-F, Hsing Y-I (2007) A rice phenomics studyā€”phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Mol Biol 65:427ā€“438

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Chin HG, Choe MS, Lee S-H, Park SH, Park SH, Koo JC, Kim NY, Lee JJ, Oh BG, Yi GH, Kim SC, Choi HC, Cho MJ, Han C-D (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615ā€“623

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684ā€“694

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Dai X, You C, Chen G, Li X, Zhang Q, Wu C (2011) OsBC1L4 encodes a COBRA-like protein that affects cellulose synthesis in rice. Plant Mol Biol 75:333ā€“345

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Delteil A, Blein M, Faivre-Rampant O, Guellim A, Estevan J, Hirsch J, Bevitori R, Michel C, Morel J-B (2011) Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence. Mol Plant Pathol 13:72ā€“82

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  19. Diaz G, Ryba M, Nelson R, Leung H, Leach J (2007) Detection of deletion mutants in rice via overgo hybridization onto membrane spotted arrays. Plant Mol Biol Rep 25:17ā€“26

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Droc G, Ruiz M, Larmande P, Pereira A, Piffanelli P, Morel JB, Dievart A, Courtois B, Guiderdoni E, Perin C (2006) OryGenesDB: a database for rice reverse genetics. Nucleic Acids Res 34:736ā€“740

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Du H, Liu L, You L, Yang M, He Y, Li X, Xiong L (2011) Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice. Plant Mol Biol 77:547ā€“563

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304ā€“1318

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Eamens AL, Blanchard CL, Dennis ES, Upadhyaya NM (2004) A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). Plant Biotechnol J 2:367ā€“380

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  24. Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605ā€“613

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Fu F-F, Xue H-W (2010) Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol 154:927ā€“938

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Fu F-F, Ye R, Xu S-P, Xue H-W (2009) Studies on rice seed quality through analysis of a large-scale T-DNA insertion population. Cell Res 19:380ā€“391

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  27. Fujino K, Sekiguchi H (2011) Transposition behavior of nonautonomous a hAT superfamily transposon nDart in rice (Oryza sativa L.). Mol Genet Genomics 286:135ā€“142

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  28. Fujino K, Sekiguchi H, Kiguchi T (2005) Identification of an active transposon in intact rice plants. Mol Genet Genomics 273:150ā€“157

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. Fujita N, Toyosawa Y, Utsumi Y, Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y (2009) Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot 60:1009ā€“1023

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140:1070ā€“1084

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  31. Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J-H, Jane J-L, Miyao A, Hirochika H, Nakamura Y (2007) Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol 144:2009ā€“2023

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Goh C-H, Jang S, Jung S, Kim H-S, Kang H-G, Park Y-I, Bae H-J, Lee C-H, An G (2009) Rice phot1 mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth. Plant Mol Biol 69:605ā€“619

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Greco R, Ouwerkerk PBF, de Kam RJ, Sallaud C, Favalli C, Colombo L, Guiderdoni E, Meijer AH, Hoge JHC, Pereira A (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theor Appl Genet 108:10ā€“24

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Guiderdoni E, An G, Yu SM, Hsing YL, Wu C (2007) T-DNA insertion mutants as a resource for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomicsā€”challenges, progress and prospects. Springer, New York, pp 187ā€“227

    Google ScholarĀ 

  35. Han M-J, Jung K-H, Yi G, An G (2011) Rice importin Ī²1 gene affects pollen tube elongation. Mol Cells 31:523ā€“530

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Han M-J, Jung K-H, Yi G, Lee D-Y, An G (2006) Rice immature pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47:1457ā€“1472

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271ā€“282

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118ā€“122

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci U S A 93:7783ā€“7788

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Hong J-P, Byun MY, An K, Yang S-J, An G, Kim WT (2010) OsKu70 is associated with developmental growth and genome stability in rice. Plant Physiol 152:374ā€“387

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Hong J-P, Byun MY, Koo D-H, An K, Bang J-W, Chung IK, An G, Kim WT (2007) Suppression of RICE TELOMERE BINDING PROTEIN1 results in severe and gradual developmental defects accompanied by genome instability in rice. Plant Cell 19:1770ā€“1781

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Hossain MA, Cho J-I, Han M, Ahn C-H, Jeon J-S, An G, Park PB (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512ā€“1520

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Hsing Y-I, Chern C-G, Fan M-J, Lu P-C, Chen K-T, Lo S-F, Ho S-L, Lee K-W, Wang Y-C, Sun P-K, Ko R, Huang W-L, Chen J-L, Chung C-I, Lin Y-C, Hour A-L, Wang Y-W, Chang Y-C, Tsai M-W, Lin Y-S, Chen Y-C, Chen S, Yen H-M, Li C-P, Wey C-K, Tseng C-S, Lai M-H, Chen L-J, Yu S-M (2006) A rice gene activation/knockout mutant population for high throughput functional genomics analysis. Plant Mol Biol 63:351ā€“364

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, Huang WL, Ko SS, Chen S, Chen JL, Chung CI, Lin YC, Hour AL, Wang YW, Chang YC, Tsai MW, Lin YS, Chen YC, Yen HM, Li CP, Wey CK, Tseng CS, Lai MH, Huang SC, Chen LJ, Yu SM (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63:351ā€“364

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  45. Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205ā€“219

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  46. Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S, Shimamoto K (1991) Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Mol Gen Genet 227:391ā€“396

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Park SH, Huang J, Do Choi Y, An G, Wong HL, Fujioka S, Kim M-C, Shimamoto K, Han C-D (2010) RAV-like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell 22:1777ā€“1791

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561ā€“570

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123ā€“132

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Jeong DH, An SY, Kang HG, Moon S, Han JJ, Park S, Lee HS, An KS, An GH (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636ā€“1644

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Ji H, Kim S-R, Kim Y-H, Kim H, Eun M-Y, Jin I-D, Cha Y-S, Yun D-W, Ahn B-O, Lee MC, Lee G-S, Yoon U-H, Lee J-S, Lee Y-H, Suh S-C, Jiang W, Yang J-I, Jin P, McCouch SR, An G, Koh H-J (2010) Inactivation of the CTD phosphatase-like gene OsCPL1 enhances the development of the abscission layer and seed shattering in rice. Plant J 61:96ā€“106

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Jiang C, Mithani A, Gan X, Belfield EJ, Klingler John P, Zhu J-K, Ragoussis J, Mott R, Harberd Nicholas P (2011) Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 21:1385ā€“1390

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163ā€“167

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  54. Jiang S-Y, Bachmann D, La H, Ma Z, Venkatesh P, Ramamoorthy R, Ramachandran S (2007) Ds insertion mutagenesis as an efficient tool to produce diverse variations for rice breeding. Plant Mol Biol 65:385ā€“402

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  55. Jiang SY, Cai M, Ramachandran S (2005) The Oryza sativa no pollen (Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein. Plant Mol Biol 57:835ā€“853

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  56. Jiang Y, Bao L, Jeong S-Y, Kim S-K, Xu C, Li X, Zhang Q (2012) XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J 70:398ā€“408

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  57. Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q (2011) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 30:1059ā€“1070

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Johnson AAT, Hibberd JM, Gay C, Essah PA, Haseloff J, Tester M, Guiderdoni E (2005) Spatial control of transgene expression in rice (Oryza sativa L.) using the GAL4 enhancer trapping system. Plant J 41:779ā€“789

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  59. Jung K-H, Han M-J, Lee Y-S, Kim Y-W, Hwang I, Kim M-J, Kim Y-K, Nahm BH, An G (2005) Rice undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17:2705ā€“2722

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  60. Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An GH (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463ā€“472

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Kaneko M, Inukai Y, Ueguchi-Tanaka M, Itoh H, Izawa T, Kobayashi Y, Hattori T, Miyao A, Hirochika H, Ashikari M, Matsuoka M (2004) Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell 16:33ā€“44

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267ā€“278

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Kikuchi K, Terauchi K, Wada M, Hirano H-Y (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167ā€“170

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Kim CM, Park SH, Je BI, Park SH, Park SJ, Piao HL, Eun MY, Dolan L, Han C-D (2007) OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol 143:1220ā€“1230

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  65. Kim S-R, Yang J-I, Moon S, Ryu C-H, An K, Kim K-M, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeatā€“DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738ā€“749

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Koh S, Lee S-C, Kim M-K, Koh J, Lee S, An G, Choe S, Kim S-R (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453ā€“466

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  67. Kohli AK, Xiong JX, Greco RG, Christou PC, Pereira AP (2001) Tagged transcriptome display (TTD) in indica rice using Ac transposition. Mol Genet Genomics 266:1ā€“11

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  68. Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301ā€“314

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Krishnan A, Guiderdoni E, An G, Hsing Y-I, Han C-D, Lee MC, Yu S-M, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165ā€“170

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  70. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283ā€“2290

    PubMedĀ  CASĀ  Google ScholarĀ 

  71. Kumar CS, Wing RA, Sundaresan V (2005) Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879ā€“892

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K (2005) Identification of a putative voltage-gated Ca2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J 42:798ā€“809

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Larmande P, Gay C, Lorieux M, Perin C, Bouniol M, Droc G, Sallaud C, Perez P, Barnola I, Biderre-Petit C, Martin J, Morel JB, Johnson AAT, Bourgis F, Ghesquiere A, Ruiz M, Courtois B, Guiderdoni E (2008) Oryza tag line, a phenotypic mutant database for the genoplante rice insertion line library. Nucleic Acids Res 36:D1022ā€“D1027

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Lee GS, Park SH, Yun DW, Ahn BO, Kim CK, Han CD, Yi GH, Park DS, Eun MY, Yoon UH (2010) Current status of Ac/Ds mediated gene tagging systems for study of rice functional genomics in Korea. J Plant Biotechnol 371:125ā€“132

    Google ScholarĀ 

  75. Lee J, Park J-J, Kim S, Yim J, An G (2007) Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol 65:487ā€“499

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Lee S, Jeong H, Kim S, Lee J, Guerinot M, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507ā€“517

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Lee S, Jung K-H, An G, Chung Y-Y (2004) Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol 54:755ā€“765

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. Lee S, Kim J-H, Yoo ES, Lee C-H, Hirochika H, An G (2005) Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol 57:805ā€“818

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. Lee S, Kim J, Son J-S, Nam J, Jeong D-H, Lee K, Jang S, Yoo J, Lee J, Lee D-Y, Kang H-G, An G (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol 44:1403ā€“1411

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  80. Lee S, Kim S, Lee J, Guerinot M, An G (2010) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551ā€“558

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831ā€“842

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  82. Lee SC, Kim JY, Kim SH, Kim SJ, Lee K, Han SK, Choi HS, Jeong DH, An GH, Kim SR (2004) Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. Plant Sci 166:69ā€“79

    ArticleĀ  CASĀ  Google ScholarĀ 

  83. Lee Y-S, Jeong D-H, Lee D-Y, Yi J, Ryu C-H, Kim SL, Jeong HJ, Choi SC, Jin P, Yang J, Cho L-H, Choi H, An G (2010) OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J 63:18ā€“30

    PubMedĀ  CASĀ  Google ScholarĀ 

  84. Li A, Zhang Y, Wu X, Tang W, Wu R, Dai Z, Liu G, Zhang H, Wu C, Chen G, Pan X (2008) DH1, a LOB domain-like protein required for glume formation in rice. Plant Mol Biol 66:491ā€“502

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  85. Li C, Wang Y, Liu L, Hu Y, Zhang F, Mergen S, Wang G, SchlƤppi MR, Chu C (2011) A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet 7:e1002196

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  86. Li J, Jiang D, Zhou H, Li F, Yang J, Hong L, Fu X, Li Z, Liu Z, Li J, Zhuang C (2011) Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice. PLoS One 6:e17444

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Li J, Zhu S, Song X, Shen Y, Chen H, Yu J, Yi K, Liu Y, Karplus VJ, Wu P, Deng XW (2006) A rice glutamate receptorā€“like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18:340ā€“349

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  88. Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C (2011) Rice APOPTOSIS INHIBITOR5 coupled with Two DEAD-Box adenosine 5ā€²-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23:1416ā€“1434

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27:235ā€“242

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  90. Li X, Yang Y, Yao J, Chen G, Li X, Zhang Q, Wu C (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685ā€“697

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. Liang D, Wu C, Li C, Xu C, Zhang J, Kilian A, Li X, Zhang Q, Xiong L (2006) Establishment of a patterned GAL4/VP16 transactivation system for discovering gene function in rice. Plant J 46:1059ā€“1072

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JAD, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603ā€“2618

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. Lorieux M, Blein M, Lozano J, Bouniol M, Droc G, DiĆ©vart A, PĆ©rin C, Mieulet D, Lanau N, BĆØs M, RouviĆØre C, Gay C, Piffanelli P, Larmande P, Michel C, Barnola I, Biderre-Petit C, Sallaud C, Perez P, Bourgis F, GhesquiĆØre A, Gantet P, Tohme J, Morel JB, Guiderdoni E (2012) In-depth molecular and phenotypic characterization in a rice insertion line library facilitates gene identification through reverse and forward genetics approaches. Plant Biotechnol J 10:555ā€“568

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES (2009) Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2:711ā€“723

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  95. Manosalva P, Ryba-White M, Wu C, Lei C, Baraoidan M, Leung H, Leach JE (2003) A PCR-based screening strategy for detecting deletions in defense response genes in rice. Phytopathology 93:S57

    Google ScholarĀ 

  96. Margis-Pinheiro M, Zhou X-R, Zhu Q-H, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23:819ā€“833

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  97. Matsumoto T, Wu JZ, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T, Sakata K, Nagamura Y, Aoki H, Arikawa K, Arita K, Bito T, Chiden Y, Fujitsuka N, Fukunaka R, Hamada M, Harada C, Hayashi A, Hijishita S, Honda M, Hosokawa S, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito K, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Kurita K, Katagiri S, Kikuta A, Kobayashi H, Kobayashi N, Machita K, Maehara T, Masukawa M, Mizubayashi T, Mukai Y, Nagasaki H, Nagata Y, Naito S, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Meguro A, Negishi M, Ohta I, Ohta T, Okamoto M, Ono N, Saji S, Sakaguchi M, Sakai K, Shibata M, Shimokawa T, Song JY, Takazaki Y, Terasawa K, Tsugane M, Tsuji K, Ueda S, Waki K, Yamagata H, Yamamoto M, Yamamoto S, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong HS, Yano M, Sasaki T, Yuan QP, Shu OT, Liu J, Jones KM, Gansberger K, Moffat K, Hill J, Bera J, Fadrosh D, Jin SH, Johri S, Kim M, Overton L, Reardon M, Tsitrin T, Vuong H, Weaver B, Ciecko A, Tallon L, Jackson J, Pai G, Van Aken S, Utterback T, Reidmuller S, Feldblyum T, Hsiao J, Zismann V, Iobst S, de Vazeille AR, Buell CR, Ying K, Li Y, Lu TT, Huang YC, Zhao Q, Feng Q, Zhang L, Zhu JJ, Weng QJ, Mu J, Lu YQ, Fan DL, Liu YL, Guan JP, Zhang YJ, Yu SL, Liu XH, Zhang Y, Hong GF, Han B, Choisne N, Demange N, Orjeda G, Samain S, Cattolico L, Pelletier E, Couloux A, Segurens B, Wincker P, Dā€™Hont A, Scarpelli C, Weissenbach J, Salanoubat M, Quetier F, Yu Y, Kim HR, Rambo T, Currie J, Collura K, Luo MZ, Yang TJ, Ammiraju JSS, Engler F, Soderlund C, Wing RA, Palmer LE, de la Bastide M, Spiegel L, Nascimento L, Zutavern T, Oā€™Shaughnessy A, Dike S, Dedhia N, Preston R, Balija V, McCombie WR, Chow TY, Chen HH, Chung MC, Chen CS, Shaw JF, Wu HP, Hsiao KJ, Chao YT, Chu MK, Cheng CH, Hour AL, Lee PF, Lin SJ, Lin YC, Liou JY, Liu SM, Hsing YI, Raghuvanshi S, Mohanty A, Bharti AK, Gaur A, Gupta V, Kumar D, Ravi V, Vij S, Kapur A, Khurana P, Khurana P, Khurana JP, Tyagi AK, Gaikwad K, Singh A, Dalal V, Srivastava S, Dixit A, Pal AK, Ghazi IA, Yadav M, Pandit A, Bhargava A, Sureshbabu K, Batra K, Sharma TR, Mohapatra T, Singh NK, Messing J, Nelson AB, Fuks G, Kavchok S, Keizer G, Llaca ELV, Song RT, Tanyolac B, Young S, Il KH, Hahn JH, Sangsakoo G, Vanavichit A, de Mattos LAT, Zimmer PD, Malone G, Dellagostin O, de Oliveira AC, Bevan M, Bancroft I, Minx P, Cordum H, Wilson R, Cheng ZK, Jin WW, Jiang JM, Leong SA, Iwama H, Gojobori T, Itoh T, Niimura Y, Fujii Y, Habara T, Sakai H, Sato Y, Wilson G, Kumar K, McCouch S, Juretic N, Hoen D, Wright S, Bruskiewich R, Bureau T, Miyao A, Hirochika H, Nishikawa T, Kadowaki K, Sugiura M, Project IRGS (2005) The map-based sequence of the rice genome. Nature 436:793ā€“800

    ArticleĀ  CASĀ  Google ScholarĀ 

  98. Miyao A, Hirochika H (2004) In silico mutant screening of rice using the mutant panel database. Plant Cell Physiol 45:S38

    Google ScholarĀ 

  99. Miyao A, Iwasaki Y, Kitano H, Itoh J, Maekawa M, Murata K, Yatou O, Nagato Y, Hirochika H (2007) A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes. Plant Mol Biol 63:625ā€“635

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  100. Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256ā€“264

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771ā€“1780

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  102. Moon S, Jung KH, Lee DE, Lee DY, Lee J, An K, Kang HG, An G (2006) The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells 21:147ā€“152

    PubMedĀ  CASĀ  Google ScholarĀ 

  103. Mori M, Tomita C, Hayashi N, Hasegawa M, Sugimoto K, Sekimoto H, Hirochika H, Kikuchi S (2004) Disease resistance of a lesion mimic mutant obtained by rice activation tagging. Plant Cell Physiol 45:S142

    Google ScholarĀ 

  104. Nakagawa Y, Machida C, Machida Y, Toriyama K (2000) Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol 41:733ā€“742

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  105. Nakamura A, Fukuda A, Sakai S, Tanaka Y (2006) Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol 47:32ā€“42

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  106. Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170ā€“172

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  107. Ning J, Zhang B, Wang N, Zhou Y, Xiong L (2011) Increased leaf angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell 23:4334ā€“4347

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  108. Nishimura H, Ahmed N, Tsugane K, Iida S, Maekawa M (2008) Distribution and mapping of an active autonomous aDart element responsible for mobilizing nonautonomous nDart1 transposons in cultivated rice varieties. Theor Appl Genet 116:395ā€“405

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  109. Nonomura KI, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N (2003) The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell 15:1728ā€“1739

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  110. Nonomura KI, Nakano M, Murata K, Miyoshi K, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Genet Genomics 271:121ā€“129

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  111. Nonomura KL, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:1008ā€“1020

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  112. Oā€™Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61:928ā€“940

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Park D-S, Park S-K, Han S-I, Wang H-J, Jun N-S, Manigbas N, Woo Y-M, Ahn B-O, Yun D-W, Yoon U-H, Kim Y-H, Lee M-C, Kim D-H, Nam M-H, Han C-D, Kang H-W, Yi G (2009) Genetic variation through dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status. Mol Breed 24:1ā€“15

    ArticleĀ  CASĀ  Google ScholarĀ 

  114. Park G-G, Park J-J, Yoon J, Yu S-N, An G (2010) A RING finger E3 ligase gene Oryza sativa delayed seed germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol 74:467ā€“478

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  115. Park J-J, Jin P, Yoon J, Yang J-I, Jeong H, Ranathunge K, Schreiber L, Franke R, Lee I-J, An G (2012) Mutation in wilted dwarf and lethal (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol Biol 74:91ā€“103

    ArticleĀ  CASĀ  Google ScholarĀ 

  116. Park J-J, Yi J, Yoon J, Cho L-H, Ping J, Jeong HJ, Cho SK, Kim WT, An G (2011) OsPUB15, an E3 ubiquitin ligase, functions to reduce cellular oxidative stress during seedling establishment. Plant J 65:194ā€“205

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  117. Park S, Jun N, Kim C, Oh T, Huang J, Xuan Y-H, Park S, Je B, Piao H, Park S, Cha Y, Ahn B, Ji H, Lee M, Suh S, Nam M-H, Eun M, Yi G, Yun D, Han C-D (2007) Analysis of gene-trap Ds rice populations in Korea. Plant Mol Biol 65:373ā€“384

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  118. Park S, Kim C, Je B, Park S, Park S, Piao H, Xuan Y-H, Choe M, Satoh K, Kikuchi S, Lee K, Cha Y, Ahn B, Ji H, Yun D, Lee M, Suh S-C, Eun M, Han C-D (2007) A Ds-insertion mutant of OSH6 (Oryza sativa homeobox 6) exhibits outgrowth of vestigial leaf-like structures, bracts, in rice. Planta 227:1ā€“12

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  119. Peng H, Huang H, Yang Y, Zhai Y, Wu J, Huang D, Lu T (2005) Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Sci 168:1571ā€“1579

    ArticleĀ  CASĀ  Google ScholarĀ 

  120. Petit J, Bourgeois E, Stenger W, BĆØs M, Droc G, Meynard D, Courtois B, GhesquiĆØre A, Sabot F, Panaud O, Guiderdoni E (2009) Diversity of the Ty-1 copia retrotransposon Tos17 in rice (Oryza sativa L.) and the AA genome of the Oryza genus. Mol Genet Genomics 282:633ā€“652

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  121. Phelps CB, Brand AH (1998) Ectopic gene expression in Drosophila using GAL4 system. Methods 14:367ā€“379

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  122. Piao H-L, Xuan Y-H, Park S, Je B, Park S, Park S, Kim C, Huang J, Wang G, Kim M, Kang S, Lee I-J, Kwon T-R, Kim Y, Yeo U-S, Yi G, Son D, Han C-D (2010) OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells 30:19ā€“27

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  123. Piffanelli P, Droc G, Mieulet D, Lanau N, BĆØs M, Bourgeois E, RouviĆØre C, Gavory F, Cruaud C, GhesquiĆØre A, Guiderdoni E (2007) Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol 65:587ā€“601

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  124. Plett D, Safwat G, Gilliham M, Skrumsager Moller I, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS One 5:e12571

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  125. Qu S, Desai A, Wing R, Sundaresan V (2008) A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol 146:189ā€“199

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  126. Ryu CH, You JH, Kang HG, Hur JH, Kim YH, Han MJ, An KS, Chung BC, Lee CH, An GH (2004) Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol 54:489ā€“502

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  127. Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642ā€“1653

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  128. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450ā€“464

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  129. Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396ā€“1408

    PubMedĀ  CASĀ  Google ScholarĀ 

  130. Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18:992ā€“1002

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  131. Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J (2012) Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. Planta 235:433ā€“441

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  132. Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K, Terada R, Inagaki Y, Iida S (1993) Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol Gen Genet 239:354ā€“360

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  133. Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N (2007) MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279:213ā€“223

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  134. Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J 42:641ā€“651

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  135. Takagi K, Maekawa M, Tsugane K, Iida S (2010) Transposition and target preferences of an active nonautonomous DNA transposon nDart1 and its relatives belonging to the hAT superfamily in rice. Mol Genet Genomics 284:343ā€“355

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  136. Takano M, Inagaki N, Xie XZ, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311ā€“3325

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  137. Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya W (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13:521ā€“534

    PubMedĀ  CASĀ  Google ScholarĀ 

  138. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73ā€“83

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  139. Thangasamy S, Guo C, Chuang M, Lai M, Chen J, Jauh G (2011) Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol 189:869ā€“882

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  140. Till B, Cooper J, Tai T, Colowit P, Greene E, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  141. Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257ā€“1268

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  142. Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun C-H, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46ā€“57

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  143. Upadhyaya N, Zhu Q-H, Zhou X-R, Eamens A, Hoque M, Ramm K, Shivakkumar R, Smith K, Pan S-T, Li S, Peng K, Kim S, Dennis E (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326ā€“1341

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  144. van Enckevort LJG, Droc G, Piffanelli P, Greco R, Gagneur C, Weber C, Gonzalez VM, Cabot P, Fornara F, Berri S, Miro B, Lan P, Rafel M, Capell T, Puigdomenech P, Ouwerkerk PBF, Meijer AH, Pe E, Colombo L, Christou P, Guiderdoni E, Pereira A (2005) EU-OSTID: a collection of transposon insertional mutants for functional genomics in rice. Plant Mol Biol 59:99ā€“110

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  145. Warthmann N, Chen H, Ossowski S, Weigel D, HervƩ P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  146. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581ā€“590

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  147. Woo Y-M, Park H-J, Suā€™udi M, Yang J-I, Park J-J, Back K, Park Y-M, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125ā€“136

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  148. Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou D-X, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418ā€“427

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  149. Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci 105:12915ā€“12920

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  150. Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85ā€“97

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  151. Wuriyanghan H, Zhang B, Cao W-H, Ma B, Lei G, Liu Y-F, Wei W, Wu H-J, Chen L-J, Chen H-W, Cao Y-R, He S-J, Zhang W-K, Wang X-J, Chen S-Y, Zhang J-S (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473ā€“1494

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  152. Yamaguchi T, Lee DY, Miyao A, Hirochika H, An GH, Hirano HY (2006) Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa. Plant Cell 18:15ā€“28

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  153. Yamazaki M, Tsugawa H, Miyao A, Yano M, Wu J, Yamamoto S, Matsumoto T, Sasaki T, Hirochika H (2001) The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets. Mol Genet Genomics 265:336ā€“344

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  154. Yang Y, Peng H, Huang H, Wu J, Jia S, Huang D, Lu T (2004) Large-scale production of enhancer trapping lines for rice functional genomics. Plant Sci 167:281ā€“288

    ArticleĀ  CASĀ  Google ScholarĀ 

  155. Yi J, Kim S-R, Lee D-Y, Moon S, Lee Y-S, Jung K-H, Hwang I, An G (2012) The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis. Plant J 70:256ā€“270

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  156. Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C (2009) Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J 59:303ā€“315

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  157. Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Zhang J, Chen G, Li X, Liu H, Han B, Zhang Q, Wu C (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49:947ā€“959

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  158. Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S (2006) RMD: a rice mutant database for functional analysis of the rice genome. Nucleic Acids Res 34:D745ā€“D748

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  159. Zhang Q, Li J, Xue Y, Han B, Deng XW (2008) Rice 2020: a call for an international coordinated effort in rice functional genomics. Mol Plant 1:715ā€“719

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  160. Zhu Q-H, Hoque M, Dennis E, Upadhyaya N (2003) Ds tagging of BRANCHED FLORETLESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol 3:6

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  161. Zhu Q-H, Ramm K, Shivakkumar R, Dennis ES, Upadhyaya NM (2004) The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol 135:1514ā€“1525

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  162. Zou L-P, Sun X-H, Zhang Z-G, Liu P, Wu J-X, Tian C-J, Qiu J-L, Lu T-G (2011) Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol 156:1589ā€“1602

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors thank the French National Genomics Initiative GĆ©noplante, the Agence Nationale de la Recherche (grant ANR08-GENM-021) in France, the European Commission, the Next-Generation BioGreen 21 Program (PJ008215 and PJ008168), Rural Development Administration, the twenty-first century Frontier Program (CG1111) and the Biogreen 21 program, Republic of Korea, Academia Sinica, the National Science Council and the Council of Agriculture of the Republic of China and the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Guiderdoni Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Droc, G. et al. (2013). Mutant Resources for Functional Analysis of the Rice Genome. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_7

Download citation

Publish with us

Policies and ethics