Skip to main content

Epigenomics

  • Chapter
  • First Online:
Genetics and Genomics of Rice

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 5))

Abstract

Rice is a model plant for genomics and is now also becoming a model for plant epigenomics and epigenetics. Rice epigenomic landscapes including genome-wide DNA methylation and histone modifications are emerging. Studies of rice chromatin modification regulators have revealed a number of specific functions in gene expression, transposon repression, and plant development. Epigenomic variations are being identified among different rice subspecies and varieties, which may be related to stable or heritable epialleles implicated in the production of important agronomical traits and may have significance in the hybrid vigor in rice. Thus, studying rice epigenomic variation and epigenetic mechanism may provide novel strategies for rice genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horn PJ, Peterson CL (2002) Molecular biology. Chromatin higher order folding–wrapping up transcription. Science 297:1824–1827

    Article  PubMed  CAS  Google Scholar 

  2. Grewal SI, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Article  PubMed  CAS  Google Scholar 

  3. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  PubMed  CAS  Google Scholar 

  4. Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    Article  PubMed  CAS  Google Scholar 

  5. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296

    Article  PubMed  CAS  Google Scholar 

  6. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  PubMed  CAS  Google Scholar 

  7. Feng S, Cokus SJ, Zhang X et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694

    Article  PubMed  CAS  Google Scholar 

  8. Zemach A, Kim MY, Silva P et al (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A 107:18729–18734

    Article  PubMed  CAS  Google Scholar 

  9. He G, Zhu X, Elling AA et al (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  PubMed  CAS  Google Scholar 

  10. Gehring M, Henikoff S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286

    Article  PubMed  CAS  Google Scholar 

  11. Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  PubMed  CAS  Google Scholar 

  12. Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  PubMed  CAS  Google Scholar 

  13. Cao X, Aufsatz W, Zilberman D et al (2003) Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr Biol 13:2212–2217

    Article  PubMed  CAS  Google Scholar 

  14. Gong Z, Morales-Ruiz T, Ariza RR et al (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  PubMed  CAS  Google Scholar 

  15. Choi Y, Gehring M, Johnson L et al (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    Article  PubMed  CAS  Google Scholar 

  16. La H, Ding B, Mishra GP et al (2011) A 5-methylcytosine DNA glycosylase/lyase demethylates the retrotransposon Tos17 and promotes its transposition in rice. Proc Natl Acad Sci U S A 108:15498–15503

    Article  PubMed  CAS  Google Scholar 

  17. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  18. Chen ZJ, Tian L (2007) Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochim Biophys Acta 1769:295–307

    Article  PubMed  CAS  Google Scholar 

  19. Servet C, Conde e Silva N, Zhou DX (2010) Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol Plant 3:670–677

    Article  PubMed  CAS  Google Scholar 

  20. Yin BL, Guo L, Zhang DF et al (2008) Integration of cytological features with molecular and epigenetic properties of rice chromosome 4. Mol Plant 1:816–829

    Article  PubMed  CAS  Google Scholar 

  21. Tsuji H, Saika H, Tsutsumi N et al (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  PubMed  CAS  Google Scholar 

  22. Li C, Huang L, Xu C et al (2011) Altered levels of histone deacetylase OsHDT1 affect differential gene expression patterns in hybrid rice. PLoS One 6:e21789

    Article  PubMed  CAS  Google Scholar 

  23. Hu Y, Qin F, Huang L et al (2009) Rice histone deacetylase genes display specific expression patterns and developmental functions. Biochem Biophys Res Commun 388:266–271

    Article  PubMed  CAS  Google Scholar 

  24. Pandey R, Muller A, Napoli CA et al (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055

    Article  PubMed  CAS  Google Scholar 

  25. Lusser A, Brosch G, Loidl A et al (1997) Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 277:88–91

    Article  PubMed  CAS  Google Scholar 

  26. Chung PJ, Kim YS, Jeong JS et al (2009) The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. Plant J 59:764–776

    Article  PubMed  CAS  Google Scholar 

  27. Jang IC, Pahk YM, Song SI et al (2003) Structure and expression of the rice class-I type histone deacetylase genes OsHDAC1-3: OsHDAC1 overexpression in transgenic plants leads to increased growth rate and altered architecture. Plant J 33:531–541

    Article  PubMed  CAS  Google Scholar 

  28. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    Article  PubMed  CAS  Google Scholar 

  29. Chung PJ, Kim YS, Park SH et al (2009) Subcellular localization of rice histone deacetylases in organelles. FEBS Lett 583:2249–2254

    Article  PubMed  CAS  Google Scholar 

  30. Huang L, Sun Q, Qin F et al (2007) Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144:1508–1519

    Article  PubMed  CAS  Google Scholar 

  31. Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    Article  PubMed  CAS  Google Scholar 

  32. Liu C, Lu F, Cui X et al (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  PubMed  CAS  Google Scholar 

  33. Zhang X, Bernatavichute YV, Cokus S et al (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol 10:R62

    Article  PubMed  Google Scholar 

  34. Li X, Wang X, He K et al (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    Article  PubMed  CAS  Google Scholar 

  35. Jenuwein T, Laible G, Dorn R et al (1998) SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell Mol Life Sci 54:80–93

    Article  PubMed  CAS  Google Scholar 

  36. Pien S, Fleury D, Mylne JS et al (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20:580–588

    Article  PubMed  CAS  Google Scholar 

  37. Saleh A, Alvarez-Venegas R, Yilmaz M et al (2008) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell 20:568–579

    Article  PubMed  CAS  Google Scholar 

  38. Tamada Y, Yun JY, Woo SC et al (2009) ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21:3257–3269

    Article  PubMed  CAS  Google Scholar 

  39. Guo L, Yu Y, Law JA et al (2010) SET DOMAIN GROUP2 is the major histone H3 lysine [corrected] 4 trimethyltransferase in Arabidopsis. Proc Natl Acad Sci U S A 107:18557–18562

    Article  PubMed  CAS  Google Scholar 

  40. Zhou DX, Hu Y (2010) Regulatory function of histone modifications in controlling rice gene expression and plant growth. Rice 3:103–111

    Article  Google Scholar 

  41. Charron JB, He H, Elling AA et al (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748

    Article  PubMed  CAS  Google Scholar 

  42. Turck F, Roudier F, Farrona S et al (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    Article  PubMed  Google Scholar 

  43. Rea S, Eisenhaber F, O’Carroll D et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    Article  PubMed  CAS  Google Scholar 

  44. Qin FJ, Sun QW, Huang LM et al (2010) Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression. Mol Plant 3:773–782

    Article  PubMed  CAS  Google Scholar 

  45. Ebbs ML, Bartee L, Bender J (2005) H3 Lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol Cell Biol 25:10507–10515

    Article  PubMed  CAS  Google Scholar 

  46. Ebbs ML, Bender J (2006) Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell 18:1166–1176

    Article  PubMed  CAS  Google Scholar 

  47. Jackson JP, Johnson L, Jasencakova Z et al (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112:308–315

    Article  PubMed  CAS  Google Scholar 

  48. Ding Y, Wang X, Su L et al (2007) SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19:9–22

    Article  PubMed  CAS  Google Scholar 

  49. Zhang X, Clarenz O, Cokus S et al (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    Article  PubMed  Google Scholar 

  50. Jacob Y, Feng S, LeBlanc CA et al (2009) ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat Struct Mol Biol 16:763–768

    Article  PubMed  CAS  Google Scholar 

  51. Hu Y, Liu D, Zhong X et al (2012) A CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome. Proc. Natl. Acad. Sci. USA 109:5773–5778

    Article  PubMed  CAS  Google Scholar 

  52. Pien S, Grossniklaus U (2007) Polycomb group and trithorax group proteins in Arabidopsis. Biochim Biophys Acta 1769:375–382

    Article  PubMed  CAS  Google Scholar 

  53. Luo M, Platten D, Chaudhury A et al (2009) Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant 2:711–723

    Article  PubMed  CAS  Google Scholar 

  54. Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  55. Jiang D, Yang W, He Y et al (2007) Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19:2975–2987

    Article  PubMed  CAS  Google Scholar 

  56. Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7:715–727

    Article  PubMed  CAS  Google Scholar 

  57. Trewick SC, McLaughlin PJ, Allshire RC (2005) Methylation: lost in hydroxylation? EMBO Rep 6:315–320

    Article  PubMed  CAS  Google Scholar 

  58. Chen X, Hu Y, Zhou DX (2011) Epigenetic gene regulation by plant Jumonji group of histone demethylase. Biochim Biophys Acta 1809(8):421–426

    Google Scholar 

  59. Sun Q, Zhou DX (2008) Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development. Proc Natl Acad Sci U S A 105:13679–13684

    Article  PubMed  CAS  Google Scholar 

  60. Jeong JH, Song HR, Ko JH et al (2009) Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One 4:e8033

    Article  PubMed  Google Scholar 

  61. Lu F, Cui X, Zhang S et al (2010) JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res 20:387–390

    Article  PubMed  Google Scholar 

  62. Chen Q, Chen X, Wang Q et al (2013) Structural basis of a histone H3 Lysine 4 demethylase required for stem elongation in rice. Plos Genet. 9(1): e1003239. doi:10.1371/journal.pgen.1003239

    Google Scholar 

  63. Saze H, Shiraishi A, Miura A et al (2008) Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 319:462–465

    Article  PubMed  CAS  Google Scholar 

  64. Lu F, Cui X, Zhang S et al (2011) Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat Genet 43:715–719

    Article  PubMed  CAS  Google Scholar 

  65. Benhamed M, Bertrand C, Servet C et al (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903

    Article  PubMed  CAS  Google Scholar 

  66. Vermaak D, Malik HS (2009) Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 43:467–492

    Article  PubMed  CAS  Google Scholar 

  67. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17:1823–1828

    Article  PubMed  CAS  Google Scholar 

  68. Sanchez R, Zhou MM (2011) The PHD finger: a versatile epigenome reader. Trends Biochem Sci 36:364–372

    PubMed  CAS  Google Scholar 

  69. Flanagan JF, Mi LZ, Chruszcz M et al (2005) Double chromodomains cooperate to recognize the methylated histone H3 tail. Nature 438:1181–1185

    Article  PubMed  CAS  Google Scholar 

  70. Roudier F, Ahmed I, Berard C et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    Article  PubMed  CAS  Google Scholar 

  71. Ooi SK, Qiu C, Bernstein E et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  PubMed  CAS  Google Scholar 

  72. Weinhofer I, Hehenberger E, Roszak P et al (2010) H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet 6(10):e1001152

    Article  PubMed  Google Scholar 

  73. Jackson JP, Lindroth AM, Cao X et al (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  PubMed  CAS  Google Scholar 

  74. Miura A, Nakamura M, Inagaki S et al (2009) An Arabidopsis jmjC domain protein protects transcribed genes from DNA methylation at CHG sites. EMBO J 28:1078–1086

    Article  PubMed  CAS  Google Scholar 

  75. Deleris A, Greenberg MV, Ausin I et al (2010) Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO Rep 11:950–955

    Article  PubMed  CAS  Google Scholar 

  76. Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14:204–209

    Article  PubMed  CAS  Google Scholar 

  77. Verhoeven KJ, Jansen JJ, van Dijk PJ et al (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  PubMed  CAS  Google Scholar 

  78. Boyko A, Blevins T, Yao Y et al (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5:e9514

    Article  PubMed  Google Scholar 

  79. Vaughn MW, Tanurdzic M, Lippman Z et al (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    Article  PubMed  Google Scholar 

  80. Schmitz RJ, Schultz MD, Lewsey MG et al (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  PubMed  CAS  Google Scholar 

  81. Becker C, Hagmann J, Muller J et al (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    Article  PubMed  CAS  Google Scholar 

  82. Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  PubMed  CAS  Google Scholar 

  83. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  84. Manning K, Tor M, Poole M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  PubMed  CAS  Google Scholar 

  85. Miura K, Agetsuma M, Kitano H et al (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci U S A 106:11218–11223

    Article  PubMed  CAS  Google Scholar 

  86. Liu B, Li P, Li X et al (2005) Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139:296–305

    Article  PubMed  CAS  Google Scholar 

  87. Song X, Li P, Zhai J et al (2011) Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J 69(3):462–474

    Article  PubMed  Google Scholar 

  88. Liu B, Chen Z, Song X et al (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705–2718

    Article  PubMed  CAS  Google Scholar 

  89. Urayama S, Moriyama H, Aoki N et al (2010) Knock-down of OsDCL2 in rice negatively affects maintenance of the endogenous dsRNA virus, Oryza sativa endornavirus. Plant Cell Physiol 51:58–67

    Article  PubMed  CAS  Google Scholar 

  90. Ahmad A, Dong Y, Cao X (2011) Characterization of the PRMT gene family in rice reveals conservation of arginine methylation. PLoS One 6:e22664

    Article  PubMed  CAS  Google Scholar 

  91. Hu Y, Zhu N, Wang X et al (2013) Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation. Plant Physiology and Biochemistry. 70:33–42

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Xiu Zhou Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, DX., Hu, Y., Zhao, Y. (2013). Epigenomics. In: Zhang, Q., Wing, R. (eds) Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7903-1_9

Download citation

Publish with us

Policies and ethics