Skip to main content

Food Process Engineering Research and Innovation in a Fast Changing World: Paradigms/Case Studies

  • Chapter
  • First Online:
Advances in Food Process Engineering Research and Applications

Part of the book series: Food Engineering Series ((FSES))

Abstract

Part II concentrates on insights gained from model-based numerical simulation offering an improved understanding of underlying mechanisms and – based on this – technical innovations. Two examples from ongoing research emphasize the need to use basic chemical engineering tools in food process engineering and product development research. Specific emphasis is given to material characterization, modern equipment design techniques, and numerical simulation tools. The examples cover the design of new homogenization valves for emulsification and dispersion applications and the design of food extruders for the stabilization and encapsulation of lipophilic bioactive components, as utilized for the manufacture of functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar FA, Köhler K, Schubert H, Schuchmann HP (2008) Herstellen von Emulsionen in einfachen und modifizierten Lochblenden: Einfluss der Geometrie auf die Effizienz der Zerkleinerung und Folgen für die Maßstabsvergrößerung. Chemie Ingenieur Technik 80(5):607–613

    Article  CAS  Google Scholar 

  • Armbruster H (1990) Untersuchungen zum kontinuierlichen Emulgierprozeß in Kolloidmühlen unter Berücksichtigung spezifischer Emulgatoreigenschaften und der Strömungsverhältnisse im Dispergierspalt. Dissertation, Universität Karlsruhe (TH)

    Google Scholar 

  • Avalosse T (1996) Numerical simulation of distributive mixing in 3-D flows. Macromol Symp 112:91

    Article  CAS  Google Scholar 

  • Bayer AG (1991) Preparation of pharmaceutical or cosmetic dispersions. Patent US4996004

    Google Scholar 

  • Bayer AG (1997) Verfahren und Vorrichtung zur Herstellung einer parenteralen Arzneistoffzubereitung. Patent WO9717946

    Google Scholar 

  • Bayer AG (2001) Dispersion nozzle with variable throughput. Patent WO 01/05517

    Google Scholar 

  • Bentley B, Leal L (1986) An experimental investigation of drop deformation and break-up in steady, two-dimensional linear flows. J Fluid Mech 167(1):241–283, Cambridge University Press

    Article  CAS  Google Scholar 

  • Cheng H, Manas-Zloczower I (1997) Study of mixing efficiency in kneading discs of co-rotating twin-screw extruders. Polym Eng Sci 37(6):1082–1090, Wiley

    Article  CAS  Google Scholar 

  • Cook EJ, Lagace AP (1985) Apparatus for forming emulsions, Biotechnology Development. Patent 4 533 254

    Google Scholar 

  • Dalgleish DG, Tosh SM, West S (1996) Beyond homogenization: the formation of very small emulsion droplets during the processing of milk by a Microfluidizer. Neth Milk Dairy J 50(2):135–148

    Google Scholar 

  • Darling DF, Butcher DW (1978) Milk-fat globule membrane in homogenized cream. J Dairy Res 45(2):197–208

    Article  CAS  Google Scholar 

  • Debruijn RA (1991) Deformation and breakup of drops in simple shear flows. Doctoral Thesis. Eindhoven University, The Netherlands

    Google Scholar 

  • Deroussel P, Khakhar DV, Ottino JM (2001) Mixing of viscous immiscible liquids. Part 1: computational models for strong – weak and continuous ow systems. Chem Eng Sci 56:5511–5529

    Article  CAS  Google Scholar 

  • Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM (1998) Starch production and industrial use. J Sci Food Agric 77(3):289–311, Wiley Online Library. doi:10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38=3.3.CO;2-4

    Article  CAS  Google Scholar 

  • Emin MA (2013) Dispersive mixing of oil in plasticized starch by extrusion processing to design functional foods, Verlag Dr. Hut, München, ISBN 978-3-8439-1112-2

    Google Scholar 

  • Emin MA, Köhler K, Schlender M, Schuchmann HP (2011) Characterization of mixing in food extrusion and emulsification processes by using CFD. In: Nagel WE et al (eds) High performance computing in science and engineering, vol 10. Springer, Heidelberg pp 443–462

    Google Scholar 

  • EN ISO 5167-1 (2003) Durchflussmessung von Fluiden mit Drosselgeräten in voll durchströmten Leitungen mit Kreisquerschnitt Teil 1: Allgemeine Grundlagen und Anforderungen (ISO 5167-1:2003); Deutsche Fassung EN ISO 5167-1:2003

    Google Scholar 

  • Floury J, Bellettre J, Legrand J, Desrumaux A (2004) Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chem Eng Sci 59(4):843–853

    Article  CAS  Google Scholar 

  • Freudig B (2004) Herstellen von Emulsionen und Homogenisieren von Milch in modifizierten Lochblenden. Dissertation, Universität Karlsruhe (TH), 3-8322-3147-1

    Google Scholar 

  • Gaulin A (1899) Appareil et Procédé pour la Stabilisation du Lait. Patentnr.: Brecet nr. 295596

    Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high-viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14(3–6):225–277

    Article  CAS  Google Scholar 

  • Hecht LL, Schlender M, Köhler K, Schuchmann HP (2012) Abrasion in high-pressure homogenization orifices: a new method to quantify the impact of particle loaded fluids. Wear 289:138–144

    Article  CAS  Google Scholar 

  • Hinch EJ, Acrivos A (1980) Long slender drops in a simple shear flow. J Fluid Mech 98(2):305. doi:10.1017/S0022112080000171

    Article  Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed 40(23):4330–4361, Wiley Online Library

    Article  CAS  Google Scholar 

  • Horvat M, Emin MA, Hochstein B, Willenbacher N, Schuchmann HP (2013) A multiple-step slit-die rheometer for rheological characterization of extruded starch melts. J Food Eng 116(2): 2398–2403

    Google Scholar 

  • Huneault M, Shi Z, Utracki LA (1995) Development of polymer blend morphology during compounding in a twin-screw extruder. Part IV: a new computational model with coalescence. Polym Eng Sci 35(1):115–127

    Article  CAS  Google Scholar 

  • Innings F, Tragardh C (2005) Visualization of the drop deformation and break-up process in a high pressure homogenizer. Chem Eng Technol 28(8):882–891

    Article  CAS  Google Scholar 

  • Kessler HG (2002) Food and bio process engineering – dairy technology. Verlag A. Kessler, München

    Google Scholar 

  • Kiefer P, Treiber A (1975) Prall und Stoß als Zerkleinerungsmechanismen bei der Hochdruck-Homogenisation von O/W-Emulsionen. CIT 47(13):573

    CAS  Google Scholar 

  • Köhler K (2010) Simultanes Emulgieren und Mischen, Logos Verlag, Berlin, ISBN 978-3-8325-2716-7

    Google Scholar 

  • Köhler K, Aguilar FA, Hensel A, Schubert K, Schubert H, Schuchmann HP (2007) Design of a microstructured system for homogenization of dairy products with high fat content. Chem Eng Technol 30(11):1590–1595. doi:10.1002/ceat.200700266

    Article  Google Scholar 

  • Köhler K, Aguilar FA, Hensel A, Schubert K, Schubert H, Schuchmann HP (2008) Design of a microstructured system for the homogenization of dairy products at high fat content part II: influence of process parameters. Chem Eng Technol 31(12):1863–1868

    Article  Google Scholar 

  • Köhler K, Aguilar FA, Hensel A, Schubert H, Schuchmann HP (2009) Design of a micro-structured system for the homogenization of dairy producs at high fat content- part III: influence of geometric parameters. Chem Eng Technol 32(7):1120–1126

    Article  Google Scholar 

  • Kolb GE (2001) Zur Emulsionsherstellung in Blendensystemen. Dissertation, Universität Bremen, 3-8265-9204-2

    Google Scholar 

  • Liu W-C, Halley PJ, Gilbert RG (2010) Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43(6):2855–2864. doi:10.1021/ma100067x

    Article  CAS  Google Scholar 

  • Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci Mater Med 14(2):127–135

    Article  CAS  Google Scholar 

  • Muschiolik G, Roeder R-T, Lengfeld K (1995) Druckhomogenisator. Patentnr. DE 195 30 247

    Google Scholar 

  • Ogden LV, Walstra P, Morris HA (1976) Homogenization-induced clustering of fat globules in cream and model systems. J Dairy Sci 59(10):1727–1737

    Article  CAS  Google Scholar 

  • Penth B (2000) Method and device for carring out chemical and physical processes. Patentnr. WO/2000/061275

    Google Scholar 

  • Phipps LW (1974) Cavitation and separated flow in a simple homogenizing valve and their influence on the break-up of fat globules in milk. J Dairy Res 41(3):339–347

    Article  Google Scholar 

  • Potente H, Bastian M, Bergemann K, Senge M, Scheel G, Winkelmann T (2001) Morphology of polymer blends in the melting section of co-rotating twin screw extruders. Polym Eng Sci 41(2):222–231. doi:10.1002/pen.10723

    Article  CAS  Google Scholar 

  • Ribeiro HS, Guerrero JMM, Briviba K, Rechkemmer G, Schuchmann HP, Schubert H (2006) Cellular uptake of carotenoid-loaded oil-in-water emulsions in colon carcinoma cells in vitro. J Agric Food Chem 54(25):9366–9369. doi:10.1021/jf062409z

    Article  CAS  Google Scholar 

  • Shogren RL, Fanta GF, Doane WM (1993) Development of starch-based plastics – a reexamination of selected polymer systems in historical perspective. Starch – Stärke 45(8):276–280. doi:10.1002/star.19930450806

    Article  CAS  Google Scholar 

  • Stang M (1998) Zerkleinern und Stabilisieren von Tropfen beim mechanischen Emulgieren. Dissertation, Universität Karlsruhe (TH). doi:10.1002/cite.330700917

  • Stone HA, Bentley BJ, Leal LG (1986) An experimental-study of transient effects in the break-up of viscous drops. J Fluid Mech 173:131–158

    Article  CAS  Google Scholar 

  • Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond Ser A 138(834):41–48

    Article  CAS  Google Scholar 

  • Taylor GI (1934a) The formation of emulsions in definable fields of flow. Proc R Soc Lond Ser A 146(858):501–523

    Article  CAS  Google Scholar 

  • Taylor GI (1934b) The formation of emulsions in definable fields of flow. Proc R Soc A Math Phys Eng Sci 146(858):501–523. doi:10.1098/rspa.1934.0169

    Article  CAS  Google Scholar 

  • Tesch S (2002) Charakterisieren mechanischer Emulgierverfahren: Herstellen und Stabilisieren von Tropfen als Teilschritte beim Formulieren von Emulsionen. Dissertation, Universität Karlsruhe (TH)

    Google Scholar 

  • Treiber A, Kiefer P (1976) Kavitation und Turbulenz als Zerkleinerungsmechanismen bei der Homogenisation von O/W-Emulsionen. Chemie Ingenieur Technik 48(3):259

    Article  Google Scholar 

  • van den Einde RM, van der Goot AJ, Boom RM (2003) Understanding molecular weight reduction of starch during heating-shearing processes. J Food Sci 68(8):2396–2404. doi:10.1111/j.1365-2621.2003.tb07036x

    Article  Google Scholar 

  • van den Einde RM, Akkermans C, van der Goot AJ, Boom RM (2004) Molecular breakdown of corn starch by thermal and mechanical effects. Carbohydr Polym 56(4):415–422. doi:10.1016/j.carbpol.2004.03.006

    Article  Google Scholar 

  • Walstra P (1983) Formation of emulsions. In: Becher P (ed) Encyclopedia of emulsion technology, vol 1. Marcel Dekker, New York, pp 57–128

    Google Scholar 

  • Walstra P (1999) Casein sub-micelles: do they exist? Int Dairy J 9(3–6):189–192

    Article  CAS  Google Scholar 

  • Walstra P, Oortwijn H (1982) The membranes of recombined fat globules. 3. Mode of formation. Neth Milk Dairy J 36(2):103–113

    Google Scholar 

  • Yilmaz G, Jongboom ROJ, Feil H, Hennink WE (2001) Encapsulation of sunflower oil in starch matrices via extrusion: effect of the interfacial properties and processing conditions on the formation of dispersed phase morphologies. Carbohydr Polym 45(4):403–410. doi:10.1016/S0144-8617(00)00264-2, Elsevier

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike P. Schuchmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schuchmann, H.P., Köhler, K., Emin, M.A., Schubert, H. (2013). Food Process Engineering Research and Innovation in a Fast Changing World: Paradigms/Case Studies. In: Yanniotis, S., Taoukis, P., Stoforos, N., Karathanos, V. (eds) Advances in Food Process Engineering Research and Applications. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2_2

Download citation

Publish with us

Policies and ethics