Skip to main content

Biofilm-Related Periprosthetic Joint Infections

  • Chapter
  • First Online:
Periprosthetic Joint Infection of the Hip and Knee

Abstract

The majority of animal studies that have been used to model biofilm-related infections that accompany the use of biomedical devices have primarily involved an initial inoculum of planktonic bacterial cells from batch cultures. Although valuable, data that has been derived from these experiments may not provide important clinical insight into how bacteria in well-established, mature biofilms impact device-related and other clinical infections when they initially contaminate a patient site or implanted device. In this chapter, a discussion is presented on the impact that a shift in biofilm research may have if initial inocula of well-established, mature biofilms are used to model device-related infections in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buret A, Ward KH, Olson ME, Costerton JW. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res. 1991;25(7):865–74.

    Article  PubMed  CAS  Google Scholar 

  2. Cirioni O, Mocchegiani F, Ghiselli R, Silvestri C, Gabrielli E, Marchionni E, Orlando F, Nicolini D, Risaliti A, Giacometti A. Daptomycin and rifampin alone and in combination prevent vascular graft biofilm formation and emergence of antibiotic resistance in a subcutaneous rat pouch model of staphylococcal infection. Eur J Vasc Endovasc Surg. 2010;40(6):817–22.

    Article  PubMed  CAS  Google Scholar 

  3. Lambe DW, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW. Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Orthop Relat Res. 1991;266:285–94.

    PubMed  Google Scholar 

  4. Darouiche RO, Farmer J, Chaput C, Mansouri M, Saleh G, Landon GC. Anti-infective efficacy of antiseptic-coated intramedullary nails. J Bone Joint Surg. 1998;80(9):1336–40.

    PubMed  CAS  Google Scholar 

  5. Darouiche RO, Mansouri MD. Dalbavancin compared with vancomycin for prevention of Staphylococcus aureus colonization of devices in vivo. J Infect. 2005;50(3):206–9.

    Article  PubMed  CAS  Google Scholar 

  6. Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother. 2009;64(1):88–93.

    Article  PubMed  CAS  Google Scholar 

  7. Darouiche RO, Mansouri MD, Zakarevicz D, AlSharif A, Landon GC. In vivo efficacy of antimicrobial-coated devices. J Bone Joint Surg. 2007;89(4):792–7.

    Article  PubMed  Google Scholar 

  8. Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen. 2008;16(1):23–9.

    Article  PubMed  Google Scholar 

  9. Dohar JE, Hebda PA, Veeh R, Awad M, Costerton JW, Hayes J, Ehrlich GD. Mucosal biofilm formation on middle-ear mucosa in a nonhuman primate model of chronic suppurative otitis media. Laryngoscope. 2005;115(8):1469–72.

    Article  PubMed  Google Scholar 

  10. Elasri MO, Thomas JR, Skinner RA, Blevins JS, Beenken KE, Nelson CL, Smeltzer MS. Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis. Bone. 2002;30(1):275–80.

    Article  PubMed  CAS  Google Scholar 

  11. Fernandez-Hidalgo N, Gavalda J, Almirante B, Martin M-T, Onrubia PL, Gomis X, Pahissa A. Evaluation of linezolid, vancomycin, gentamicin and ciprofloxacin in a rabbit model of antibiotic-lock technique for Staphylococcus aureus catheter-related infection. J Antimicrob Chemother. 2010;65(3):525–30.

    Article  PubMed  CAS  Google Scholar 

  12. Hansen LK, Berg K, Johnson D, Sanders M, Citron M. Efficacy of local rifampin/minocycline delivery (AIGISRX®) to eliminate biofilm formation on implanted pacing devices in a rabbit model. Int J Artif Organs. 2010;33(9):627–35.

    PubMed  CAS  Google Scholar 

  13. Hart E, Azzopardi K, Taing H, Graichen F, Jeffery J, Mayadunne R, Wickramaratna M, O’Shea M, Nijagal B, Watkinson R, et al. Efficacy of antimicrobial polymer coatings in an animal model of bacterial infection associated with foreign body implants. J Antimicrob Chemother. 2010;65(5):974–80.

    Article  PubMed  CAS  Google Scholar 

  14. Keeling WB, Myers AR, Stone PA, Heller L, Widen R, Back MR, Johnson BL, Bandyk DF, Shames ML. Regional antibiotic delivery for the treatment of experimental prosthetic graft infections. J Surg Res. 2009;157(2):223–6.

    Article  PubMed  CAS  Google Scholar 

  15. Li B, Brown KV, Wenke JC, Guelcher SA. Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model. J Control Release. 2010;145(3):221–30.

    Article  PubMed  CAS  Google Scholar 

  16. Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Haas NP, Raschke M. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone. 2003;32(5):521–31.

    Article  PubMed  CAS  Google Scholar 

  17. Mayberry-Carson KJ, Tober-Meyer B, Smith JK, Lambe Jr DW, Costerton JW. Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus. Infect Immun. 1984;43(3):825–33.

    PubMed  CAS  Google Scholar 

  18. Reid SD, Hong W, Dew KE, Winn DR, Pang B, Watt J, Glover DT, Hollingshead SK, Swords WE. Streptococcus pneumoniae forms surface-attached communities in the middle ear of experimentally infected chinchillas. J Infect Dis. 2009;199(6):786–94.

    Article  PubMed  Google Scholar 

  19. Zou G-Y, Shen H, Jiang Y, Zhang X-L. Synergistic effect of a novel focal hyperthermia on the efficacy of rifampin in staphylococcal experimental foreign-body infection. J Int Med Res. 2009;37(4):1115–26.

    Article  PubMed  CAS  Google Scholar 

  20. Brin YS, Golenser J, Mizrahi B, Maoz G, Domb AJ, Peddada S, Tuvia S, Nyska A, Nyska M. Treatment of osteomyelitis in rats by injection of degradable polymer releasing gentamicin. J Control Release. 2008;131(2):121–7.

    Article  PubMed  CAS  Google Scholar 

  21. Xie Z, Liu X, Jia W, Zhang C, Huang W, Wang J. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. J Control Release. 2009;139(2):118–26.

    Article  PubMed  CAS  Google Scholar 

  22. Krasko MY, Golenser J, Nyska A, Nyska M, Brin YS, Domb AJ. Gentamicin extended release from an injectable polymeric implant. J Control Release. 2007;117(1):90–6.

    Article  PubMed  CAS  Google Scholar 

  23. Williams D, Bloebaum R, Petti CA. Characterization of Staphylococcus aureus strains in a rabbit model of osseointegrated pin infections. J Biomed Mater Res A. 2008;85(2):366–70.

    PubMed  Google Scholar 

  24. Chou TGR, Petti CA, Szakacs J, Bloebaum RD. Evaluating antimicrobials and implant materials for infection prevention around transcutaneous osseointegrated implants in a rabbit model. J Biomed Mater Res A. 2010;92(3):942–52.

    PubMed  Google Scholar 

  25. ZoBell CE. The effect of solid surfaces upon bacterial activity. J Bacteriol. 1943;46(1):39–56.

    PubMed  CAS  Google Scholar 

  26. Costerton JW. The predominance of biofilms in natural and engineered ecosystems. In: Costerton JW, editor. The biofilm primer. Heidelberg: Springer; 2007. p. 5–13.

    Chapter  Google Scholar 

  27. Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;238(1):86–95.

    Article  PubMed  CAS  Google Scholar 

  28. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE. Optical sectioning of microbial biofilms. J Bacteriol. 1991;173:6558–67.

    PubMed  CAS  Google Scholar 

  29. Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton JW. Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol. 1977;23(12):1733–6.

    Article  PubMed  CAS  Google Scholar 

  30. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, Costerton JW, Stewart PS. Biofilms in chronic wounds. Wound Repair Regen. 2008;16:37–44.

    Article  PubMed  Google Scholar 

  31. Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead Biofilms. Proc Natl Acad Sci U S A. 2009;106(38):16393–9.

    Article  PubMed  CAS  Google Scholar 

  32. Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 2008;6(8):43.

    Article  Google Scholar 

  33. Gristina AG, Costerton JW. Bacteria-laden biofilms: a hazard to orthopedic prostheses. Infect Surg. 1984;3:655–62.

    Google Scholar 

  34. Marrie T, Nelligan J, Costerton J. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation. 1982;66:1339–41.

    Article  PubMed  CAS  Google Scholar 

  35. Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiol Rev. 2000;24:661–71.

    Article  PubMed  CAS  Google Scholar 

  36. Costerton JW. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 2001;9(2):50–2.

    Article  PubMed  CAS  Google Scholar 

  37. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24(8):742–6.

    Article  PubMed  CAS  Google Scholar 

  38. Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg. 1990;72:299–304.

    PubMed  CAS  Google Scholar 

  39. Zalazras CG, Marcus RE, Levin S, Patzakis MJ. Management of open fractures and subsequent complications. J Bone Joint Surg. 2007;89:884–95.

    Google Scholar 

  40. Johnson EN, Burns TC, Hayada RA, Hospenthal DR, Murray CK. Infectious complications of open type III tibial fracture among combat casualties. Clin Infect Dis. 2007;45:409–15.

    Article  PubMed  Google Scholar 

  41. Lambert EW, Simpson RB, Marzouk A, Unger DV. Orthopaedic injuries among survivors of USS COLE attack. J Orthop Trauma. 2003;17(6):436–41.

    Article  PubMed  Google Scholar 

  42. Bakken LR. Separation and purification of bacteria from soil. Appl Environ Microbiol. 1985;49(6):1482–7.

    PubMed  CAS  Google Scholar 

  43. Torsvik V, Goksoyr J, Daae FL. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990;56(3):782–7.

    PubMed  CAS  Google Scholar 

  44. Cerca N, Jefferson KK, Oliviera R, Pier GB, Azeredo J. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun. 2006;74(8):4849–55.

    Article  PubMed  CAS  Google Scholar 

  45. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol. 2005;175:7512–8.

    PubMed  CAS  Google Scholar 

  46. Donlan RM. Biofilms associated with medical devices and implants. In: Jass J, Surman S, Walker J, editors. Medical biofilms: detection, prevention, and control. Chichester: Wiley; 2003. p. 29–96.

    Google Scholar 

  47. Gaudin A, Valle GAD, Hamel A, Mabecque VL, Miegeville A-F, Potel G, Caillon J, Jacqueline C. A new experimental model of acute osteomyelitis due to methicillin-resistant Staphylococcus aureus in rabbit. Lett Appl Microbiol. 2011;52(3):253–7.

    Article  PubMed  CAS  Google Scholar 

  48. Nickel JC, Ruseska I, Wright JB, Costerton JW. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother. 1985;27(4):619–24.

    Article  PubMed  CAS  Google Scholar 

  49. Melchior MB, Fink-Gremmels J, Gaastra W. Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. J Vet Med B. 2006;53:326–32.

    Article  CAS  Google Scholar 

  50. Ceri H, Olson ME, Morck DW, Storey DG. Minimal biofilm eradication concentration (MBEC) assay: susceptibility testing for biofilms. In: Pace JL, Rupp ME, Finch RG, editors. Biofilms, infection, and antimicrobial therapy. Boca Raton: CRC Press; 2006. p. 257–69.

    Google Scholar 

  51. Fry DE, Fry RV. Surgical site infection: the host factor. AORN J. 2007;86(5):801–14.

    Article  PubMed  Google Scholar 

  52. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17:91–6.

    Article  PubMed  Google Scholar 

  53. Robson MC, Heggers JP. Bacterial quantification of open wounds. Mil Med. 1969;134:19–24.

    PubMed  CAS  Google Scholar 

  54. Krizek TJ, Robson MC, Kho E. Bacterial growth and skin graft survival. Surg Forum. 1967;18:518.

    Google Scholar 

  55. Murphy RC, Robson MC, Heggers JP, Kadowaki M. The effect of microbial contamination on musculocutaneous and random flaps. J Surg Res. 1986;41(1):75–80.

    Article  PubMed  CAS  Google Scholar 

  56. Bowler PG. The 105 bacterial growth guideline: reassessing its clinical relevance in wound healing. Ostomy Wound Manage. 2003;49:44–53.

    PubMed  Google Scholar 

  57. Bernthal NM, Stavrakis AI, Billi F, Cho JS, Kremen TJ, Simon SI, Cheung AL, Finerman GA, Lieberman JR, Adams JS, et al. A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One. 2010;5(9):e12580.

    Article  PubMed  Google Scholar 

  58. Antoci V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J. Vancomycin bound to Ti rods reduces periprosthetic infection: preliminary study. Clin Orthop Relat Res. 2007;461:88–95.

    PubMed  Google Scholar 

  59. Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, Watters C, Stewart PS, Dowd SE. Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care. 2010;19(8):320–8.

    PubMed  CAS  Google Scholar 

  60. Williams DL, Haymond BS, Woodbury KL, Beck JP, Moore DE, Epperson RT, Bloebaum RD. Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula. J Biomed Mater Res A. 2012;100(7):1888–900.

    PubMed  Google Scholar 

  61. Williams DL, Woodbury KL, Haymond BS, Parker AE, Bloebaum RD. A modified CDC biofilm reactor to produce mature biofilms on the surface of PEEK membranes for an in vivo animal model application. Curr Microbiol. 2011;62(6):1657–63.

    Article  PubMed  CAS  Google Scholar 

  62. Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW, Donlan RM. Statistical assessment of a laboratory method for growing biofilms. Microbiology. 2005;151:757–62.

    Article  PubMed  CAS  Google Scholar 

  63. Costerton JW. The microbiology of the healthy human body. In: Costerton JW, editor. The biofilm primer. Heidelberg: Springer; 2007. p. 107–28.

    Chapter  Google Scholar 

  64. Brandt C, Hott U, Sohr D, Daschner F, Gastmeier P, Ruden H. Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery. Ann Surg. 2008;248:695–700.

    Article  PubMed  Google Scholar 

  65. Sponseller PO, Shah SA, Abel MF, Newton PO, Letko L, Marks M. Infection rate after spine surgery in cerebral palsy is high and impairs results. Clin Orthop Relat Res. 2010;468:711–6.

    Article  PubMed  Google Scholar 

  66. Kaltsas DS. Infection after total hip arthroplasty. Ann R Coll Surg Engl. 2004;86:267–71.

    Article  PubMed  Google Scholar 

  67. Tate A, Yazdany T, Bhatia N. The use of infection prevention practices in female pelvic medicine and reconstructive surgery. Curr Opin Obstet Gynecol. 2010;22:408–13.

    Article  PubMed  Google Scholar 

  68. Pozo JLD, Patel R. Infection associated with prosthetic joints. N Engl J Med. 2009;361:787–94.

    Article  PubMed  Google Scholar 

  69. Murray CK. Epidemiology of infections associated with combat-related injuries in Iraq and Afghanistan. J Trauma. 2008;64:S232–8.

    Article  PubMed  Google Scholar 

  70. Owens BD, Kragh Jr JF, Macaitis J, Svoboda SJ, Wenke JC. Characterization of extremity wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J Orthop Trauma. 2007;21:254–7.

    Article  PubMed  Google Scholar 

  71. Zimmerli W. Prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol. 2006;20(6):1045–63.

    Article  PubMed  Google Scholar 

  72. Thomas JG, Nakaishi LA. Managing the complexity of a dynamic biofilm. J Am Dent Assoc. 2006;137:10S–5.

    PubMed  CAS  Google Scholar 

  73. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA. A diversity profile of the human skin microbiota. Genome Res. 2008;18:1043–50.

    Article  PubMed  CAS  Google Scholar 

  74. Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol. 1975;30(3):381–95.

    PubMed  CAS  Google Scholar 

  75. Guarner F, Malagelada J-R. Gut flora in health and disease. Lancet. 2003;361:512–9.

    Article  PubMed  Google Scholar 

  76. Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology. 1984;86(1):174–93.

    PubMed  CAS  Google Scholar 

  77. Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13:45–56.

    Article  PubMed  CAS  Google Scholar 

  78. Hendley JO, Ashe KM. Effect of topical antimicrobial treatment on aerobic bacteria in the stratum corneum of human skin. Antimicrob Agents Chemother. 1991;35(4):627–31.

    Article  PubMed  CAS  Google Scholar 

  79. Williams DL, Costerton JW. Using biofilms as initial inocula in animal models of biofilm-related infections. J Biomed Mater Res B. 2011;100(4):1163–9.

    Google Scholar 

  80. Connell JL, Wessel AK, Parsek MR, Ellington AD, Whiteley M, Shear JB. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio. 2010;1(4):e00202–10.

    Article  PubMed  Google Scholar 

  81. Williams DL, Haymond BS, Bloebaum RD. Use of delrin plastic in a modified CDC biofilm reactor. Res J Microbiol. 2011;6:425–9.

    Article  Google Scholar 

  82. Zhao G, Hochwalt PC, Usui ML, Underwood RA, Singh PK, James GA, Stewart PS, Fleckman P, Olerud JE. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge—a model for the study of chronic wounds. Wound Repair Regen. 2010;18(5):467–77.

    Article  PubMed  Google Scholar 

  83. Serralta VW, Harrison-Balestra C, Cazzaniga AL, Davis SC, Mertz PM. Lifestyles of bacteria in wounds: presence of biofilms? Wounds. 2001;13(1):29–34.

    Google Scholar 

  84. Mertz PM. Cutaneous biofilms: friend or foe? Wounds. 2003;15:129–32.

    Google Scholar 

  85. Percival SL, Bowler PG. Biofilms and their potential role in wound healing. Wounds. 2004;16:234–40.

    Google Scholar 

  86. James G, Swogger E, deLancey-Pulcini E. Biofilms in chronic wounds. In: Costerton JW, editor. The role of biofilms in device-related infections. Heidelberg: Springer; 2009. p. 11–4.

    Google Scholar 

  87. Okuda K, Ishihara K, Nakagawa T, Hirayama A, Inayama Y, Okuda K. Detection of Treponema denticola in atherosclerotic lesions. J Clin Microbiol. 2001;39(3):1114–7.

    Article  PubMed  CAS  Google Scholar 

  88. Chiu B. Multiple infections in carotid atherosclerotic plaques. Am Heart J. 1999;138(5 Pt 2):S534–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy D. Bloebaum Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, D.L., Bloebaum, R.D. (2014). Biofilm-Related Periprosthetic Joint Infections. In: Springer, B., Parvizi, J. (eds) Periprosthetic Joint Infection of the Hip and Knee. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7928-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7928-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7927-7

  • Online ISBN: 978-1-4614-7928-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics