We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Critical Signal Transduction Pathways in CLL | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Critical Signal Transduction Pathways in CLL

  • Chapter
  • First Online:
Advances in Chronic Lymphocytic Leukemia

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Receptor tyrosine kinases (RTKs) are cell-surface transmembrane receptors that contain regulated kinase activity within their cytoplasmic domain and play a critical role in signal transduction in both normal and malignant cells. Besides B cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL), multiple RTKs have been reported to be constitutively active in CLL B cells, resulting in enhanced survival and resistance to apoptosis of the leukemic cells induced by chemotherapeutic agents. In addition to increased plasma levels of various types of cytokines/growth factors in CLL, we and others have detected that CLL B cells spontaneously produce multiple cytokines in vitro which may constitute an autocrine loop of RTK activation on the leukemic B cells. Moreover, aberrant expression and activation of non-RTKs, for example, Src/Syk kinases, induce resistance of the leukemic B cells to therapy. Based on current available knowledge, we detailed the impact of aberrant activities of various RTKs/non-RTKs on CLL B cell survival and the potential of using these signaling components as future therapeutic targets in CLL therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pleyer L, Egle A, Hartmann TN, Greil R. Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nature Rev Clin Oncol. 2009;6(7):405–18.

    CAS  Google Scholar 

  2. Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE. VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia. 2005;19(4):513–23.

    PubMed  CAS  Google Scholar 

  3. Ghosh AK, Secreto C, Boysen J, Sassoon T, Shanafelt TD, Mukhopadhyay D, et al. The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood. 2011;117(6):1928–37 [In Vitro Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  4. Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E, et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res. 2008;14(2):396–404 [Research Support, N.I.H., Intramural].

    PubMed  CAS  Google Scholar 

  5. Veronese L, Tournilhac O, Verrelle P, Davi F, Dighiero G, Chautard E, et al. Strong correlation between VEGF and MCL-1 mRNA expression levels in B-cell chronic lymphocytic leukemia. Leuk Res. 2009;33(12):1623–6 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  6. Schillaci R, Galeano A, Becu-Villalobos D, Spinelli O, Sapia S, Bezares RF. Autocrine/paracrine involvement of insulin-like growth factor-I and its receptor in chronic lymphocytic leukaemia. Br J Haematol. 2005;130(1):58–66 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  7. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  8. Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Bohmer FD, et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell. 2009;36(2):326–39 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  9. Landreth KS, Narayanan R, Dorshkind K. Insulin-like growth factor-I regulates pro-B cell differentiation. Blood. 1992;80(5):1207–12 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  10. Wang LM, Myers Jr MG, Sun XJ, Aaronson SA, White M, Pierce JH. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells. Science. 1993;261(5128):1591–4 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  11. Rodriguez-Tarduchy G, Collins MK, Garcia I, Lopez-Rivas A. Insulin-like growth factor-I inhibits apoptosis in IL-3-dependent hemopoietic cells. J Immunol. 1992;149(2):535–40 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  12. Ratajczak MZ, Kuczynski WI, Onodera K, Moore J, Ratajczak J, Kregenow DA, et al. A reappraisal of the role of insulin-like growth factor I in the regulation of human hematopoiesis. J Clin Invest. 1994;94(1):320–7 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  13. Kooijman R, Willems M, De Haas CJ, Rijkers GT, Schuurmans AL, Van Buul-Offers SC, et al. Expression of type I insulin-like growth factor receptors on human peripheral blood mononuclear cells. Endocrinology. 1992;131(5):2244–50.

    PubMed  CAS  Google Scholar 

  14. Baserga R. The IGF-I receptor in cancer research. Exp Cell Res. 1999;253(1):1–6 [Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  15. Larsson O, Girnita A, Girnita L. Role of insulin-like growth factor 1 receptor signalling in cancer. Br J Cancer. 2005;92(12):2097–101 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  16. Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci. 2000;57(7):1050–93 [Review].

    PubMed  CAS  Google Scholar 

  17. Hernandez-Sanchez C, Blakesley V, Kalebic T, Helman L, LeRoith D. The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem. 1995;270(49):29176–81.

    PubMed  CAS  Google Scholar 

  18. Kim B, Cheng HL, Margolis B, Feldman EL. Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J Biol Chem. 1998;273(51):34543–50 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  19. Beitner-Johnson D, LeRoith D. Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J Biol Chem. 1995;270(10):5187–90 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  20. D’Ambrosio C, Hongo A, Li S, Baserga R. The role of Grb2 in the growth and transformation of mouse embryo cells. Oncogene. 1996;12(2):371–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  21. Butler AA, Blakesley VA, Koval A, deJong R, Groffen J, LeRoith D. In vivo regulation of CrkII and CrkL proto-oncogenes in the uterus by insulin-like growth factor-I. Differential effects on tyrosine phosphorylation and association with paxillin. J Biol Chem. 1997;272(44):27660–4.

    PubMed  CAS  Google Scholar 

  22. Favelyukis S, Till JH, Hubbard SR, Miller WT. Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol. 2001;8(12):1058–63 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  23. Baserga R. The contradictions of the insulin-like growth factor 1 receptor. Oncogene. 2000;19(49):5574–81 [Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  24. Tao Y, Pinzi V, Bourhis J, Deutsch E. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer. Nat Clin Pract Oncol. 2007;4(10):591–602 [Review].

    PubMed  CAS  Google Scholar 

  25. Saiya-Cork K, Collins R, Parkin B, Ouillette P, Kuizon E, Kujawski L, et al. A pathobiological role of the insulin receptor in chronic lymphocytic leukemia. Clin Cancer Res. 2011;17(9):2679–92 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  26. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71.

    PubMed  CAS  Google Scholar 

  27. Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A. 1993;90(22):10705–9 [In Vitro].

    PubMed  CAS  Google Scholar 

  28. Ebos JM, Bocci G, Man S, Thorpe PE, Hicklin DJ, Zhou D, et al. A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma. Mol Cancer Res. 2004;2(6):315–26 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  29. Hughes DC. Alternative splicing of the human VEGFGR-3/FLT4 gene as a consequence of an integrated human endogenous retrovirus. J Mol Evol. 2001;53(2):77–9.

    PubMed  CAS  Google Scholar 

  30. Dixelius J, Makinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003;278(42):40973–9 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  31. Ivy SP, Wick JY, Kaufman BM. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol. 2009;6(10):569–79 [Review].

    PubMed  CAS  Google Scholar 

  32. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    PubMed  CAS  Google Scholar 

  33. Vacca A, Ribatti D, Ruco L, Giacchetta F, Nico B, Quondamatteo F, et al. Angiogenesis extent and macrophage density increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas. Br J Cancer. 1999;79(5–6):965–70.

    PubMed  CAS  Google Scholar 

  34. Shanafelt TD, Kay NE. The clinical and biologic importance of neovascularization and angiogenic signaling pathways in chronic lymphocytic leukemia. Semin Oncol. 2006;33(2):174–85 [Review].

    PubMed  CAS  Google Scholar 

  35. Kay NE, Shanafelt TD, Strege AK, Lee YK, Bone ND, Raza A. Bone biopsy derived marrow stromal elements rescue chronic lymphocytic leukemia B-cells from spontaneous and drug induced cell death and facilitates an “angiogenic switch”. Leuk Res. 2007;31(7):899–906.

    PubMed  CAS  Google Scholar 

  36. Kay NE, Bone ND, Tschumper RC, Howell KH, Geyer SM, Dewald GW, et al. B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia. 2002;16(5):911–9.

    PubMed  CAS  Google Scholar 

  37. Kini AR, Kay NE, Peterson LC. Increased bone marrow angiogenesis in B cell chronic lymphocytic leukemia. Leukemia. 2000;14(8):1414–8.

    PubMed  CAS  Google Scholar 

  38. Szmigielska-Kaplon A, Lech-Maranda E, Jesionek-Kupnicka D, Gora-Tybor J, Blonski JZ, Kasznicki M, et al. Prognostic value of the bone marrow microvessel density in progressive B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51(7):1351–3.

    PubMed  Google Scholar 

  39. Molica S, Vacca A, Ribatti D, Cuneo A, Cavazzini F, Levato D, et al. Prognostic value of enhanced bone marrow angiogenesis in early B-cell chronic lymphocytic leukemia. Blood. 2002;100(9):3344–51.

    PubMed  CAS  Google Scholar 

  40. Molica S, Vitelli G, Levato D, Gandolfo GM, Liso V. Increased serum levels of vascular endothelial growth factor predict risk of progression in early B-cell chronic lymphocytic leukaemia. Br J Haematol. 1999;107(3):605–10.

    PubMed  CAS  Google Scholar 

  41. Molica S, Vitelli G, Levato D, Ricciotti A, Digiesi G. Clinicoprognostic implications of increased serum levels of vascular endothelial growth factor and basic fibroblastic growth factor in early B-cell chronic lymphocytic leukaemia. Br J Cancer. 2002;86(1):31–5.

    PubMed  CAS  Google Scholar 

  42. Aguayo A, Manshouri T, O’Brien S, Keating M, Beran M, Koller C, et al. Clinical relevance of Flt1 and Tie1 angiogenesis receptors expression in B-cell chronic lymphocytic leukemia (CLL). Leuk Res. 2001;25(4):279–85.

    PubMed  CAS  Google Scholar 

  43. Bairey O, Boycov O, Kaganovsky E, Zimra Y, Shaklai M, Rabizadeh E. All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leuk Res. 2004;28(3):243–8.

    PubMed  CAS  Google Scholar 

  44. Ferrajoli A, Manshouri T, Estrov Z, Keating MJ, O’Brien S, Lerner S, et al. High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin Cancer Res. 2001;7(4):795–9.

    PubMed  CAS  Google Scholar 

  45. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE. VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood. 2004;104(3):788–94.

    PubMed  CAS  Google Scholar 

  46. Till KJ, Spiller DG, Harris RJ, Chen H, Zuzel M, Cawley JC. CLL, but not normal, B cells are dependent on autocrine VEGF and alpha4beta1 integrin for chemokine-induced motility on and through endothelium. Blood. 2005;105(12):4813–9.

    PubMed  CAS  Google Scholar 

  47. Ugarte-Berzal E, Redondo-Munoz J, Eroles P, Del Cerro MH, Garcia-Marco JA, Terol MJ, et al. VEGF/VEGFR2 interaction down-regulates matrix metalloproteinase-9 via STAT1 activation and inhibits B chronic lymphocytic leukemia cell migration. Blood. 2010;115(4):846–9.

    PubMed  CAS  Google Scholar 

  48. Abrams ST, Brown BR, Zuzel M, Slupsky JR. Vascular endothelial growth factor stimulates protein kinase CbetaII expression in chronic lymphocytic leukemia cells. Blood. 2010;115(22):4447–54.

    PubMed  CAS  Google Scholar 

  49. Shanafelt TD, Byrd JC, La PB, Zent CS, Call T, Secreto C, et al. Pretreatment angiogenic cytokines predict response to chemoimmunotherapy in patients with chronic lymphocytic leukaemia. Br J Haematol. 2009;146(6):660–4.

    PubMed  Google Scholar 

  50. Ellis LM. The role of neuropilins in cancer. Mol Cancer Ther. 2006;5(5):1099–107 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  51. Kreuter M, Woelke K, Bieker R, Schliemann C, Steins M, Buechner T, et al. Correlation of neuropilin-1 overexpression to survival in acute myeloid leukemia. Leukemia. 2006;20(11):1950–4 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  52. Nowakowski GS, Mukhopadhyay D, Wu X, Kay NE. Neuropilin-1 is expressed by chronic lymphocytic leukemia B cells. Leuk Res. 2008;32(10):1634–6.

    PubMed  CAS  Google Scholar 

  53. Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu CG, et al. Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood. 2009;113(22):5568–74.

    PubMed  CAS  Google Scholar 

  54. Shanafelt T, Zent C, Byrd J, Erlichman C, Laplant B, Ghosh A, et al. Phase II trials of single-agent anti-VEGF therapy for patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51(12):2222–9 [Clinical Trial, Phase II Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  55. O’Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991;11(10):5016–31 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  Google Scholar 

  56. Korshunov VA. Axl-dependent signalling: a clinical update. Clin Sci. 2012;122(8):361–8 [Research Support, N.I.H., Extramural Review].

    PubMed  CAS  Google Scholar 

  57. Faust M, Ebensperger C, Schulz AS, Schleithoff L, Hameister H, Bartram CR, et al. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis. Oncogene. 1992;7(7):1287–93 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  58. Neubauer A, Fiebeler A, Graham DK, O’Bryan JP, Schmidt CA, Barckow P, et al. Expression of axl, a transforming receptor tyrosine kinase, in normal and malignant hematopoiesis. Blood. 1994;84(6):1931–41 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  59. Lu Q, Gore M, Zhang Q, Camenisch T, Boast S, Casagranda F, et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature. 1999;398(6729):723–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  60. Schulz AS, Schleithoff L, Faust M, Bartram CR, Janssen JW. The genomic structure of the human UFO receptor. Oncogene. 1993;8(2):509–13.

    PubMed  CAS  Google Scholar 

  61. Mudduluru G, Allgayer H. The human receptor tyrosine kinase Axl gene–promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci Rep. 2008;28(3):161–76 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  62. Dufies M, Jacquel A, Belhacene N, Robert G, Cluzeau T, Luciano F, et al. Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells. Oncotarget. 2011;2(11):874–85 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  63. Lai C, Lemke G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron. 1991;6(5):691–704 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  64. Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P, Lupu F, et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med. 2001;7(2):215–21 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  65. Graham DK, Bowman GW, Dawson TL, Stanford WL, Earp HS, Snodgrass HR. Cloning and developmental expression analysis of the murine c-mer tyrosine kinase. Oncogene. 1995;10(12):2349–59 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  66. Craven RJ, Xu LH, Weiner TM, Fridell YW, Dent GA, Srivastava S, et al. Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer. 1995;60(6):791–7 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  67. Nemoto T, Ohashi K, Akashi T, Johnson JD, Hirokawa K. Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiology. 1997;65(4):195–203.

    PubMed  CAS  Google Scholar 

  68. Ito T, Ito M, Naito S, Ohtsuru A, Nagayama Y, Kanematsu T, et al. Expression of the Axl receptor tyrosine kinase in human thyroid carcinoma. Thyroid. 1999;9(6):563–7.

    PubMed  CAS  Google Scholar 

  69. Meric F, Lee WP, Sahin A, Zhang H, Kung HJ, Hung MC. Expression profile of tyrosine kinases in breast cancer. Clin Cancer Res. 2002;8(2):361–7.

    PubMed  CAS  Google Scholar 

  70. Shieh YS, Lai CY, Kao YR, Shiah SG, Chu YW, Lee HS, et al. Expression of axl in lung adenocarcinoma and correlation with tumor progression. Neoplasia. 2005;7(12):1058–64.

    PubMed  CAS  Google Scholar 

  71. Tsou AP, Wu KM, Tsen TY, Chi CW, Chiu JH, Lui WY, et al. Parallel hybridization analysis of multiple protein kinase genes: identification of gene expression patterns characteristic of human hepatocellular carcinoma. Genomics. 1998;50(3):331–40 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  72. Vajkoczy P, Knyazev P, Kunkel A, Capelle HH, Behrndt S, von Tengg-Kobligk H, et al. Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proc Natl Acad Sci U S A. 2006;103(15):5799–804 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  73. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell. 1995;80(4):661–70.

    PubMed  CAS  Google Scholar 

  74. Varnum BC, Young C, Elliott G, Garcia A, Bartley TD, Fridell YW, et al. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature. 1995;373(6515):623–6.

    PubMed  CAS  Google Scholar 

  75. Hafizi S, Dahlback B. Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev. 2006;17(4):295–304 [Review].

    PubMed  CAS  Google Scholar 

  76. Korshunov VA, Mohan AM, Georger MA, Berk BC. Axl, a receptor tyrosine kinase, mediates flow-induced vascular remodeling. Circ Res. 2006;98(11):1446–52 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  77. Collett GD, Sage AP, Kirton JP, Alexander MY, Gilmore AP, Canfield AE. Axl/phosphatidylinositol 3-kinase signaling inhibits mineral deposition by vascular smooth muscle cells. Circ Res. 2007;100(4):502–9 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  78. Melaragno MG, Fridell YW, Berk BC. The Gas6/Axl system: a novel regulator of vascular cell function. Trends Cardiovasc Med. 1999;9(8):250–3 [Review].

    PubMed  CAS  Google Scholar 

  79. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 2010;115(9):1755–64.

    PubMed  CAS  Google Scholar 

  80. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    PubMed  CAS  Google Scholar 

  81. He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007;7(11):819–22 [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review].

    PubMed  CAS  Google Scholar 

  82. Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 2009;113(16):3801–8 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  83. Ghosh AK, Boysen J, Price-troska T, Secreto C, Zent CS, Kay N. Axl receptor tyrosine kinase signaling pathway and the p53 tumor suppressor protein exist in a novel regulatory loop in B-cell chronic lymphocytic leukemia cells. ASH Annual Meeting Abstracts. 2011;118(21):799.

    Google Scholar 

  84. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  85. Liu X, Yao W, Newton RC, Scherle PA. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin Investig Drugs. 2008;17(7):997–1011 [Review].

    PubMed  CAS  Google Scholar 

  86. Eksioglu-Demiralp E, Akdeniz T, Bayik M. Aberrant expression of c-met and HGF/c-met pathway provides survival advantage in B-chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2011;80(1):1–7 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  87. Giordano S, Di Renzo MF, Narsimhan RP, Cooper CS, Rosa C, Comoglio PM. Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene. 1989;4(11):1383–8 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  88. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25 [Review].

    PubMed  CAS  Google Scholar 

  89. Christensen JG, Burrows J, Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett. 2005;225(1):1–26 [Review].

    PubMed  CAS  Google Scholar 

  90. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol. 2005;53(1):35–69 [Review].

    PubMed  Google Scholar 

  91. Gherardi E, Youles ME, Miguel RN, Blundell TL, Iamele L, Gough J, et al. Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A. 2003;100(21):12039–44 [In Vitro Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  92. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  93. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature. 1995;373(6516):702–5 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  94. Sugiura K, Taketani S, Yoshimura T, Nishino T, Nishino N, Fujisawa J, et al. Effect of hepatocyte growth factor on long term hematopoiesis of human progenitor cells in transgenic-severe combined immunodeficiency mice. Cytokine. 2007;37(3):218–26 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  95. Chan PC, Chen SY, Chen CH, Chen HC. Crosstalk between hepatocyte growth factor and integrin signaling pathways. J Biomed Sci. 2006;13(2):215–23 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  96. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  97. Moroni E, Dell’Era P, Rusnati M, Presta M. Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors. J Hematother Stem Cell Res. 2002;11(1):19–32 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  98. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29 [Review].

    PubMed  CAS  Google Scholar 

  99. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene. 2010;29(14):2013–23 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  100. Ramos AH, Dutt A, Mermel C, Perner S, Cho J, Lafargue CJ, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8(21):2042–50 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  101. Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007;9(2):R23 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  102. Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008;68(7):2340–8.

    PubMed  CAS  Google Scholar 

  103. Takeda M, Arao T, Yokote H, Komatsu T, Yanagihara K, Sasaki H, et al. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res. 2007;13(10):3051–7 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  104. Malgeri U, Baldini L, Perfetti V, Fabris S, Vignarelli MC, Colombo G, et al. Detection of t(4;14)(p16.3;q32) chromosomal translocation in multiple myeloma by reverse transcription-polymerase chain reaction analysis of IGH-MMSET fusion transcripts. Cancer Res. 2000;60(15):4058–61 [Comparative Study Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  105. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood. 1998;92(9):3025–34 [Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  106. Chang H, Qi XY, Samiee S, Yi QL, Chen C, Trudel S, et al. Genetic risk identifies multiple myeloma patients who do not benefit from autologous stem cell transplantation. Bone Marrow Transplant. 2005;36(9):793–6 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  107. Squires M, Ward G, Saxty G, Berdini V, Cleasby A, King P, et al. Potent, selective inhibitors of fibroblast growth factor receptor define fibroblast growth factor dependence in preclinical cancer models. Mol Cancer Ther. 2011;10(9):1542–52 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  108. Taylor JG, Cheuk AT, Tsang PS, Chung JY, Song YK, Desai K, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest. 2009;119(11):3395–407 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  109. Wang JK, Gao G, Goldfarb M. Fibroblast growth factor receptors have different signaling and mitogenic potentials. Mol Cell Biol. 1994;14(1):181–8 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  110. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7(3):165–97 [Review].

    PubMed  CAS  Google Scholar 

  111. Menzel T, Rahman Z, Calleja E, White K, Wilson EL, Wieder R, et al. Elevated intracellular level of basic fibroblast growth factor correlates with stage of chronic lymphocytic leukemia and is associated with resistance to fludarabine. Blood. 1996;87(3):1056–63.

    PubMed  CAS  Google Scholar 

  112. Krejci P, Dvorakova D, Krahulcova E, Pachernik J, Mayer J, Hampl A, et al. FGF-2 abnormalities in B cell chronic lymphocytic and chronic myeloid leukemias. Leukemia. 2001;15(2):228–37 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  113. Faderl S, Do KA, Johnson MM, Keating M, O’Brien S, Jilani I, et al. Angiogenic factors may have a different prognostic role in adult acute lymphoblastic leukemia. Blood. 2005;106(13):4303–7.

    PubMed  CAS  Google Scholar 

  114. Bairey O, Zimra Y, Shaklai M, Rabizadeh E. Bcl-2 expression correlates positively with serum basic fibroblast growth factor (bFGF) and negatively with cellular vascular endothelial growth factor (VEGF) in patients with chronic lymphocytic leukaemia. Br J Haematol. 2001;113(2):400–6.

    PubMed  CAS  Google Scholar 

  115. Konig A, Menzel T, Lynen S, Wrazel L, Rosen A, Al-Katib A, et al. Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia. 1997;11(2):258–65.

    PubMed  CAS  Google Scholar 

  116. Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen PY, Zhuang ZW, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest. 2011;121(7):2668–78 [Research Support, N.I.H., Extramural].

    PubMed  CAS  Google Scholar 

  117. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194(11):1639–47.

    PubMed  CAS  Google Scholar 

  118. Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol. 2008;18(11):536–44 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  119. Masiakowski P, Carroll RD. A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem. 1992;267(36):26181–90 [Comparative Study].

    PubMed  CAS  Google Scholar 

  120. Matsuda T, Nomi M, Ikeya M, Kani S, Oishi I, Terashima T, et al. Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech Dev. 2001;105(1–2):153–6 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  121. Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollitt C, et al. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet. 2000;24(3):275–8 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  122. van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet. 2000;25(4):423–6 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  123. Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet. 2000;25(4):419–22 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  124. Ermakov S, Malkin I, Keter M, Kobyliansky E, Livshits G. Family-based association study of ROR2 polymorphisms with an array of radiographic hand bone strength phenotypes. Osteoporos Int. 2007;18(12):1683–92 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  125. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H, et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med. 2001;194(11):1625–38.

    PubMed  CAS  Google Scholar 

  126. Yoda A, Oishi I, Minami Y. Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J Recept Signal Transduct Res. 2003;23(1):1–15 [Research Support, Non-U.S. Gov’t Review].

    PubMed  CAS  Google Scholar 

  127. Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M, et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer. 2008;123(5):1190–5 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  128. Reddy UR, Phatak S, Pleasure D. Human neural tissues express a truncated Ror1 receptor tyrosine kinase, lacking both extracellular and transmembrane domains. Oncogene. 1996;13(7):1555–9 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  129. Lowell CA. Src-family kinases: rheostats of immune cell signaling. Mol Immunol. 2004;41(6–7):631–43 [Review].

    PubMed  CAS  Google Scholar 

  130. Bromann PA, Korkaya H, Courtneidge SA. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene. 2004;23(48):7957–68 [Review].

    PubMed  CAS  Google Scholar 

  131. Ishizawar R, Parsons SJ. c-Src and cooperating partners in human cancer. Cancer Cell. 2004;6(3):209–14 [Review].

    PubMed  CAS  Google Scholar 

  132. Lu Y, Yu Q, Liu JH, Zhang J, Wang H, Koul D, et al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem. 2003;278(41):40057–66 [In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    PubMed  CAS  Google Scholar 

  133. Belsches AP, Haskell MD, Parsons SJ. Role of c-Src tyrosine kinase in EGF-induced mitogenesis. Front Biosci. 1997;2:d501–18 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review].

    PubMed  CAS  Google Scholar 

  134. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7 [Review].

    PubMed  CAS  Google Scholar 

  135. Guarino M. Src signaling in cancer invasion. J Cell Physiol. 2010;223(1):14–26 [Review].

    PubMed  CAS  Google Scholar 

  136. Lai SY, Johnson FM. Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat. 2010;13(3):67–78 [Review].

    PubMed  CAS  Google Scholar 

  137. Sen B, Johnson FM. Regulation of SRC family kinases in human cancers. J Signal Transduct. 2011;2011:865819.

    PubMed  Google Scholar 

  138. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest. 2005;115(2):369–78.

    PubMed  CAS  Google Scholar 

  139. Kulathu Y, Hobeika E, Turchinovich G, Reth M. The kinase Syk as an adaptor controlling sustained calcium signalling and B-cell development. EMBO J. 2008;27(9):1333–44 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  140. Turner M, Schweighoffer E, Colucci F, Di Santo JP, Tybulewicz VL. Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today. 2000;21(3):148–54 [Review].

    PubMed  CAS  Google Scholar 

  141. Kuno Y, Abe A, Emi N, Iida M, Yokozawa T, Towatari M, et al. Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood. 2001;97(4):1050–5 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  142. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20(2):313–8.

    PubMed  CAS  Google Scholar 

  143. Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholome K, Burger M, et al. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 2009;69(13):5424–32 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  144. Baudot AD, Jeandel PY, Mouska X, Maurer U, Tartare-Deckert S, Raynaud SD, et al. The tyrosine kinase Syk regulates the survival of chronic lymphocytic leukemia B cells through PKCdelta and proteasome-dependent regulation of Mcl-1 expression. Oncogene. 2009;28(37):3261–73 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  145. Antic D, Jovanovic MP, Fekete MD, Cokic V. Assessment of bone marrow microvessel density in chronic lymphocytic leukemia. Appl Immunohistochem Mol Morphol. 2010;18(4):353–6.

    PubMed  Google Scholar 

  146. Frater JL, Kay NE, Goolsby CL, Crawford SE, Dewald GW, Peterson LC. Dysregulated angiogenesis in B-chronic lymphocytic leukemia: morphologic, immunohistochemical, and flow cytometric evidence. Diagn Pathol. 2008;3:16.

    PubMed  Google Scholar 

  147. Gora-Tybor J, Jamroziak K, Szmigielska-Kaplon A, Krawczynska A, Lech-Maranda E, Wierzbowska A, et al. Evaluation of circulating endothelial cells as noninvasive marker of angiogenesis in patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(1):62–7.

    PubMed  CAS  Google Scholar 

  148. Martinelli S, Maffei R, Castelli I, Santachiara R, Zucchini P, Fontana M, et al. Increased expression of angiopoietin-2 characterizes early B-cell chronic lymphocytic leukemia with poor prognosis. Leuk Res. 2008;32(4):593–7.

    PubMed  CAS  Google Scholar 

  149. Quiney C, Billard C, Mirshahi P, Fourneron JD, Kolb JP. Hyperforin inhibits MMP-9 secretion by B-CLL cells and microtubule formation by endothelial cells. Leukemia. 2006;20(4):583–9.

    PubMed  CAS  Google Scholar 

  150. Smolej L, Andrys C, Krejsek J, Belada DZ, Zak P, Siroky O, et al. [Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are elevated in peripheral blood plasma of patients with chronic lymphocytic leukemia and decrease after intensive fludarabine-based treatment]. Vnitr Lek. 2007;53(11):1171–6.

    PubMed  CAS  Google Scholar 

  151. Paesler J, Gehrke I, Gandhirajan RK, Filipovich A, Hertweck M, Erdfelder F, et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitors vatalanib and pazopanib potently induce apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Clin Cancer Res. 2010;16(13):3390–8.

    PubMed  CAS  Google Scholar 

  152. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010;115(13):2578–85 [Clinical Trial, Phase I Clinical Trial, Phase II Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  153. Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB, Magilavy DB. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N Engl J Med. 2010;363(14):1303–12 [Clinical Trial, Phase II Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  154. Hantschel O, Rix U, Schmidt U, Burckstummer T, Kneidinger M, Schutze G, et al. The Btk tyrosine kinase is a major target of the Bcr-Abl inhibitor dasatinib. Proc Natl Acad Sci U S A. 2007;104(33):13283–8 [Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  155. Wiestner A. Emerging role of kinase targeted strategies in chronic lymphocytic leukemia. Blood. 2012;120(24):4684–91.

    PubMed  CAS  Google Scholar 

  156. Amrein PC, Attar EC, Takvorian T, Hochberg EP, Ballen KK, Leahy KM, et al. Phase II study of dasatinib in relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res. 2011;17(9):2977–86 [Clinical Trial, Phase II Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    PubMed  CAS  Google Scholar 

  157. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010;70(4):1544–54.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of the research information on CLL used in this review chapter was generated in our laboratories supported by the NIH research fund CA95241 (to NEK) and Eagles Cancer Research fund (to AKG). We acknowledge Ms. Tammy Hughes for her excellent secretarial help on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil E. Kay M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ghosh, A.K., Kay, N.E. (2013). Critical Signal Transduction Pathways in CLL. In: Malek, S. (eds) Advances in Chronic Lymphocytic Leukemia. Advances in Experimental Medicine and Biology, vol 792. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8051-8_10

Download citation

Publish with us

Policies and ethics