Skip to main content

Oncolytic Viruses and the Eradication of Drug-Resistant Tumor Cells

  • Chapter
  • First Online:
Targeted Cancer Treatment in Silico

Abstract

The main objective of oncolytic virus therapy described so far is the successful control or elimination of the tumor. Here, we describe an alternative goal of virus therapy in case the virus fails to eradicate the tumor. The virus can be used to “pre-treat” the cancer and specifically drive drug-resistant mutants extinct. This prepares the ground for subsequent drug treatment, which can then successfully drive the tumor into remission without resistance-induced failure. The key to this concept is that many drug-resistant mutants suffer a fitness cost compared to the susceptible cells in the absence of the drug. When the virus is introduced before the drug, then the less fit resistant cells share an enemy, the virus, with the fitter susceptible cells. In this case, apparent competition can occur, which can lead to exclusion of the inferior type even though coexistence occurs without the virus. Therefore, apparent competition, mediated by the oncolytic virus, can drive drug-resistant mutant cells extinct that would otherwise be present before treatment, and prepare the tumor for subsequent successful drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komarova, N.L., Wodarz, D.: Drug resistance in cancer: principles of emergence and prevention. Proc. Natl. Acad. Sci. U S A 102(27), 9714–9719 (2005)

    Article  Google Scholar 

  2. Diaz, L.A., J., Williams, R.T., Wu, J., Kinde, I., Hecht, J.R., Berlin, J., Allen, B., Bozic, I., Reiter, J.G., Nowak, M.A., Kinzler, K.W., Oliner, K.S., Vogelstein, B.: The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486(7404), 537–540 (2012)

    Google Scholar 

  3. Montagut, C., Dalmases, A., Bellosillo, B., Crespo, M., Pairet, S., Iglesias, M., Salido, M., Gallen, M., Marsters, S., Tsai, S.P., Minoche, A., Seshagiri, S., Serrano, S., Himmelbauer, H., Bellmunt, J., Rovira, A., Settleman, J., Bosch, F., Albanell, J.: Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat. Med. 18(2), 221–223 (2012)

    Article  Google Scholar 

  4. Maheswaran, S., Sequist, L.V., Nagrath, S., Ulkus, L., Brannigan, B., Collura, C.V., Inserra, E., Diederichs, S., Iafrate, A.J., Bell, D.W., Digumarthy, S., Muzikansky, A., Irimia, D., Settleman, J., Tompkins, R.G., Lynch, T.J., Toner, M., Haber, D.A.: Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 359(4), 366–377 (2008)

    Article  Google Scholar 

  5. Turke, A.B., Zejnullahu, K., Wu, Y.L., Song, Y., Dias-Santagata, D., Lifshits, E., Toschi, L., Rogers, A., Mok, T., Sequist, L., Lindeman, N.I., Murphy, C., Akhavanfard, S., Yeap, B.Y., Xiao, Y., Capelletti, M., Iafrate, A.J., Lee, C., Christensen, J.G., Engelman, J.A., Janne, P.A.: Preexistence and clonal selection of met amplification in EGFR mutant NSCLC. Cancer Cell 17(1), 77–88 (2010)

    Article  Google Scholar 

  6. Durrett, R., Moseley, S.: Evolution of resistance and progression to disease during clonal expansion of cancer. Theor. Popul. Biol. 77(1), 42–48 (2010)

    Article  Google Scholar 

  7. Holt, R.D.: Predation, apparent competition and the structure of prey communities. Theor. Pop. Biol. 12, 197–229 (1977)

    Article  MathSciNet  Google Scholar 

  8. Wodarz, D.: Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res. 61(8), 3501–3507 (2001)

    Google Scholar 

  9. Wodarz, D.: Gene therapy for killing p53-negative cancer cells: use of replicating versus nonreplicating agents. Hum. Gene Ther. 14(2), 153–159 (2003)

    Article  Google Scholar 

  10. Antonovics, J., Iwasa, Y., Hassell, M.P.: A generalized model of parasitoid, venereal, and vector-based transmission processes. Am. Nat. 145, 661–675 (1995)

    Article  Google Scholar 

  11. Begon, M., Hazel, S.M., Baxby, D., Bown, K., Cavanagh, R., Chantrey, J., Jones, T., Bennett, M.: Transmission dynamics of a zoonotic pathogen within and between wildlife host species. Proc. Biol. Sci. 266(1432), 1939–1945 (1999)

    Article  Google Scholar 

  12. May, R.M., Anderson, R.M.: Transmission dynamics of HIV infection. Nature 326(6109), 137–142 (1987)

    Article  Google Scholar 

  13. McCallum, H., Barlow, N., Hone, J.: How should pathogen transmission be modelled? Trends Ecol. Evol. 16(6), 295–300 (2001)

    Article  Google Scholar 

  14. Novozhilov, A.S., Berezovskaya, F.S., Koonin, E.V., Karev, G.P.: Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biol. Direct 1, 6 (2006)

    Article  Google Scholar 

  15. Anderson, R.M., May, R.M.: Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Animal Ecol. 47, 249–267 (1978)

    Article  Google Scholar 

  16. Diekmann, O., Kretzschmar, M.: Patterns in the effects of infectious diseases on population growth. J. Math. Biol. 29(6), 539–570 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heesterbeek, J.A., Metz, J.A.: The saturating contact rate in marriage- and epidemic models. J. Math. Biol. 31(5), 529–539 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tipping, A.J., Mahon, F.X., Lagarde, V., Goldman, J.M., Melo, J.V.: Restoration of sensitivity to STI571 in STI571-resistant chronic myeloid leukemia cells. Blood 98(13), 3864–3867 (2001)

    Article  Google Scholar 

  19. Bonsall, M.B., Hassell, M.P.: The effects of metapopulation structure on indirect interactions in host-parasitoid assemblages. Proc. R. Soc. Lond. B Biol. Sci. 267(1458), 2207–2212 (2000)

    Article  Google Scholar 

  20. Greenman, J.V., Hudson, P.J.: Host exclusion and coexistence in apparent and direct competition: an application of bifurcation theory. Theor. Popul. Biol. 56(1), 48–64 (1999)

    Article  MATH  Google Scholar 

  21. Greenman, J.V., Hudson, P.J.: Parasite-mediated and direct competition in a two-host shared macroparasite system. Theor. Popul. Biol. 57(1), 13–34 (2000)

    Article  MATH  Google Scholar 

  22. Hassell, M.P., Bonsall, M.B.: Apparent competition structures ecological assemblages. Nature 388, 371–373 (1997)

    Article  Google Scholar 

  23. Tlsty, T.D., Margolin, B.H., Lum, K.: Differences in the rates of gene amplification in nontumorigenic and tumorigenic cell lines as measured by Luria-Delbruck fluctuation analysis. Proc. Natl. Acad. Sci. U S A 86(23), 9441–9445 (1989)

    Article  Google Scholar 

  24. Barnes, D.J., Melo, J.V.: Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5(24), 2862–2866 (2006)

    Article  Google Scholar 

  25. Holyoake, T., Jiang, X., Eaves, C., Eaves, A.: Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94(6), 2056–2064 (1999)

    Google Scholar 

  26. Holyoake, T.L., Jiang, X., Jorgensen, H.G., Graham, S., Alcorn, M.J., Laird, C., Eaves, A.C., Eaves, C.J.: Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor-independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood 97(3), 720–728 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Komarova .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Komarova, N.L., Wodarz, D. (2014). Oncolytic Viruses and the Eradication of Drug-Resistant Tumor Cells. In: Targeted Cancer Treatment in Silico. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-8301-4_15

Download citation

Publish with us

Policies and ethics