Skip to main content

Computer Tomography Phantom Applications

  • Chapter
  • First Online:
The Phantoms of Medical and Health Physics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Computed tomography (CT) using X-rays was the first imaging modality used in Medicine associating computer processing with data obtained from patients’ X-ray transmission. This innovative technique developed during the second half of the 1960s and available for clinical use in 1972 has brought a new vision about the contrast details of the patient’s body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keevil, S. F. (2011). Physics and medicine: A historical perspective. Lancet, 379, 1517–1524. (Published Online April 18 2012).

    Article  Google Scholar 

  2. Webb, S. (1990). From the watching of shadows—The origins of radiological tomography. Bristol: Adam Hilger, ed.

    Google Scholar 

  3. Rothenberg, L. N., & Pentlow, K. S. (1992). Radiation dose in CT. Radiographics, 12, 1225–1243.

    Article  Google Scholar 

  4. McCollough, C. H., Bruesewitz, M. R., & Kofler, J. M, Jr. (2006). CT dose reduction and dose management tools: Overview of available options. RadioGraphics, 26, 503–512.

    Article  Google Scholar 

  5. Brenner, D. J., & Hall, E. J. (2007). Computed tomography: An increasing source of radiation exposure. New England Journal of Medicine, 357, 2277–2284.

    Article  Google Scholar 

  6. Nickoloff, E. L., & Alderson, P. O. (2001). Radiation exposures to patients from CT: Reality, public perception, and policy. American Journal of Roentgenology, 177, 285–287.

    Article  Google Scholar 

  7. Fazel, R., Krumholz, H. M., Wang, Y., Ross, J. S., Chen, J., Ting, H. H., Shah, N. D., Nasir, K., Einstein, A. J., and Nallamothu, B.K. (2009). Exposure to Low-Dose Ionizing Radiation from Medical Imaging Procedures. N Engl J Med, 361, 849–857. doi: 10.1056/NEJMoa0901249.

    Google Scholar 

  8. Fayngersh, V., & Passero, M. (2009). Estimating radiation risk from computed tomography scanning. Lung, 187, 143–148.

    Article  Google Scholar 

  9. Freudenberg, L. S., & Beyer, T. (2011). Subjective perception of radiation risk. Journal of Nuclear Medicine, 52(Suppl 2), 29S–35S.

    Article  Google Scholar 

  10. International Commission on Radiological Protection. (2007b). Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102. Annals of the ICRP 37(1). Elselvier ed.

    Google Scholar 

  11. Thomadsen, B. R., Paliwal, B. R., Laursen, J. F., Filamor, C. O., & van de Geijn, P. (1983). Some phantom designs for radiation dosimetry and CT applications. Medical Physics, 10, 886–888.

    Article  ADS  Google Scholar 

  12. Shope, T. B., Gagne, R. M., and Johnson, G. C. (1981). A method for describing the doses delivered by transmission x-ray computed tomography. Med Phys, 8(4), 488–495.

    Google Scholar 

  13. McCollough, C. H., Leng, S., Yu, L., Cody, D. D., Boone, J. M., & McNitt-Gray, M. F. (2011). CT Dose Index and patient dose: They are not the same thing. Radiology, 259, 311–316.

    Article  Google Scholar 

  14. McCullough, E. C., & Payne, J. T. (1978). Patient dosage in computed tomography. Radiology, 129, 457–463.

    Google Scholar 

  15. American Association of Physicists in Medicine. (2008). The measurement, reporting and management of radiation dose in CT. Report No. 96 of AAPM Task Group 23, Available in http://www.aapm.org/pubs/reports/.

  16. American Association of Physicists in Medicine (2010). Comprehensive methodology for the evaluation of radiation dose in x-ray computed tomography. Report No. 111 of AAPM Task Group 111. Available in http://www.aapm.org/pubs/reports/.

  17. International Electrotechnical Commission. (2009). Medical electrical equipment: Part 244Particular requirements for the safety of x-ray equipment for computed tomography. Publication no. 60601-2-44. Ed. 3.: International Electrotechnical Commission, 1–36. Geneva, Switzerland.

    Google Scholar 

  18. Furlow, B. (2010). Radiation dose in computed tomography. Radiologic Technology, 81, 437–450.

    Google Scholar 

  19. Knox, H. H., & Gagne, R. M. (1996). Alternative methods of obtaining the computed tomography dose index. Health Physics, 71, 219–224.

    Article  Google Scholar 

  20. Lin, P.-J. P., Beck, T.J., Borras, C., Cohen, G., Jucius, R.A., Kriz, R.J., Nickoloff, E.L., Rothenberg, L.N., Strauss, K.J., Villafana, T. (1993). Specification and acceptance testing of computed tomography scanners. Report No. 39 of AAPM Task Group 2. Available in http://www.aapm.org/pubs/reports/.

  21. Lavoie, L., Ghita, M., Brateman, L., & Arreola, M. (2011). Characterization of a commercially-available, optically-stimulated luminescent dosimetry system for use in computed tomography. Health Phy, 101, 299–310.

    Article  Google Scholar 

  22. Vrieze, T. J., Sturchio, G. M., & McCollough, C. H. (2012). Precision and accuracy of a commercially available CT optically stimulated luminescent dosimetry system for the measurement of CT dose index. Medical Physics, 39, 6580–6584.

    Article  ADS  Google Scholar 

  23. Yukihara, E. G., Ruan, C., Gasparian, P. B. R., Clouse, W. J., Kalavagunta, C., & Ahmad, S. (2009). An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography. Physics in Medicine & Biology, 54, 6337–6352.

    Article  ADS  Google Scholar 

  24. Gorny, K. R., Leitzen, S. L., Bruesewitz, M. R., Kofler, J. M., Hangiandreou, N. J., & McCollough, C. H. (2005). The calibration of experimental self-developing Gafchromic® HXR film for the measurement of radiation dose in computed tomography. Medical Physics, 32, 1010–1016.

    Article  ADS  Google Scholar 

  25. Mukundan, S., Wang P. I., Frush, D. P., Yoshizumi, T., Marcus, J., Kloeblen, E., and Moore, M. (2007). MOSFET Dosimetry for Radiation Dose Assessment of Bismuth Shielding of the Eye in Children. American Journal of Roentgenology. 188:1648–1650.

    Google Scholar 

  26. Gagne, R. M. (1989). Geometrical aspects of computed tomography: Sensitivity profile and exposure profile. Medical Physics, 16, 29–37.

    Article  ADS  Google Scholar 

  27. Suzuki, A., & Suzuki, M. N. (1978). Use of a pencil-shaped ionization chamber for measurement of exposure resulting from a computed tomography scan. Medical Physics, 5, 536–539.

    Article  ADS  Google Scholar 

  28. Boone, J. M. (2007). The trouble with CTD100. Medical Physics, 34, 1364–1371.

    Article  ADS  Google Scholar 

  29. Brenner, D. J., & McCollough, C. H. (2006). It is time to retire the computed tomography dose index (CTDI) for CT quality assurance and dose optimization. Medical Physics, 33, 1189–1191.

    Article  ADS  Google Scholar 

  30. Dixon, R. L. (2003). A new look at CT dose measurement: Beyond CTDI. Medical Physics, 30, 1272–1280.

    Article  ADS  Google Scholar 

  31. Dixon, R. L. et al. (2010). The future of CT dosimetry—Comprehensive methodology for the evaluation of radiation dose in x-ray computed tomography. Report of AAPM Task Group III.

    Google Scholar 

  32. International Atomic Energy Agency (IAEA). (2007). Dosimetry in diagnostic radiology: An international code of practice. Technical Reports Series No. 457 (IAEA).

    Google Scholar 

  33. Siegel, M. J., Schmidt, B., Bradley, D., Suess, C., & Hildebolt, C. (2004). Radiation dose and image quality in pediatric CT: Effect of technical factors and phantom size and shape. Radiology, 233, 515–5221.

    Article  Google Scholar 

  34. Ngaile, J. E., Msaki, P., & Kazema, R. (2012). Patient-size-dependent radiation dose optimisation technique for abdominal CT examinations. Radiation Protection Dosimetry, 148, 189–201.

    Article  Google Scholar 

  35. McCullough, E. C. (1980). Specifying and evaluating the performance of computed tomography (CT) scanners. Medical Physics, 7, 291–296.

    Article  ADS  Google Scholar 

  36. McCullough, E. C., Raker, H. I., Houser, O. W., & Reese, D. F. (1974). An evaluation of the quantitative and radiation features of a scanning x-ray transverse axial tomography: the EMI scanner. Radiology, 111, 709–715.

    Google Scholar 

  37. McCullough, E. C., Payne, J. T., Baker, H. L., Hattery, R. R., Sheedv, P. P., Stephens, D. S., et al. (1976). Performance evaluation and quality assurance of computed tomography (CT) equipment with illustrative data for ACTA, delta and EMI scanners. Radiology, 120, 173–188.

    Google Scholar 

  38. Judy P. F., Balter, S., Bassano, D., McCullough, E.C., Payne, J.T. & Rothenberg, L. (1977). Phantoms for performance evaluation and quality assurance of CT scanners. AAPM report nr. 1. American Association of Physicists in Medicine, Chicago.

    Google Scholar 

  39. Bellon, E. M., Miraldi, F. D., & Wiesen, E. J. (1979). Performance of evaluation of computed tomography scanners using a phantom model. American Journal of Roentgenology, 132, 345–352.

    Article  Google Scholar 

  40. Goodenough, D. J., Weaver, K. E., & Davis, D. O. (1977). Development of a phantom for evaluation and assurance of image quality in ct scanning. Optical Engineering, 16, 52–65.

    Article  Google Scholar 

  41. Goodenough, D. J., Levy, J. R., & Kasales, C. (1998). Development of phantoms for spiral CT. Comput Med Imag Grap, 22, 247–255.

    Article  Google Scholar 

  42. White, D. R., Martin, R., & Darlison, R. (1977). Epoxy resin based tissue substitutes. British Journal of Radiology, 50, 814–821.

    Article  Google Scholar 

  43. The Phantom Laboratory. (2012b). Catphan® 500 and 600 manual. Available on line in http://www.phantomlab.com/library/pdf/catphan500-600manual.pdf.

  44. The Institute of Physics and Engineering in Medicine. (1997). Recommended standards for the routine performance testing of diagnostic x-ray imaging systems. IPEM Report No 77. Institute of Physics and Engineering in Medicine, New York.

    Google Scholar 

  45. The Institute of Physics and Engineering in Medicine. (2003). Measurement of the performance characteristics of diagnostic x-ray systems used in medicine. IPEM Report No: 32 Part III: Computed tomography x-ray scanners (2nd edition). York, Institute of Physics and Engineering in Medicine.

    Google Scholar 

  46. European Commission. (2000). European guidelines on quality criteria for computed tomography. EUR 16262 EN. Luxembourg, Office for Official Publications of the European Communities.

    Google Scholar 

  47. American College of Radiology. (2012). CT accreditation program requirements. Available in http://www.acr.org/~/media/ACR/Documents/Accreditation/CT/Requirements.pdf.

  48. McCollough, C. H., Bruesewitz, M. R., McNitt-Gray, M. F., Bush, K., Ruckdeschel, T., Payne, J. T., et al. (2004). The phantom portion of the American College of Radiology (ACR) computed tomography (CT) accreditation program: Practical tips, artifact examples, and pitfalls to avoid. Medical Physics, 31, 2423–2442.

    Article  ADS  Google Scholar 

  49. Alderson, S. W., Lanzl, L. H., Rollins, M., & Spira, J. (1962). An instrumented phantom system for analog computation of treatment plans. American Journal of Roentgenology, 87, 185–195.

    Google Scholar 

  50. White, D. R. (1978). Tissue substitutes in experimental radiation physics. Medical Physics, 5, 467–479.

    Article  ADS  Google Scholar 

  51. Archer, B. R., Glaze, S., North, L. B., & Bushong, S. C. (1977). Dosimeter placement in the rando phantom. Medical Physics, 4, 315–318.

    Article  ADS  Google Scholar 

  52. Vacirca, S. J., Pasternack, B. S., & Blatz, H. (1972). A film-thermoluminescent dosimetry method for predicting body doses due to diagnostic radiography. Physics in Medicine & Biology, 17, 71–80.

    Article  ADS  Google Scholar 

  53. Yalcintas, M. G., & Nalcioglu, O. (1979). A method for dose determination in computerized tomography. Health Physics, 37, 543–548.

    Article  Google Scholar 

  54. Fullerton, G. D., & White, D. R. (1979). Anthropomorphic test objects for CT scanners. Radiology, 133, 217–222.

    Google Scholar 

  55. The Phantom Laboratory. (2012a). RAN 100 and RAN 110 datasheet brochure. Available on line in http://www.phantomlab.com/library/pdf/rando_datasheet.pdf.

  56. Nikolic, B., Khosa, F., Lin, P. J. P., Khan, A. N., Sarwar, S., Yam, C.-S., et al. (2010). Absorbed radiation dose in radiosensitive organs during coronary CT angiography using 320-MDCT: Effect of maximum tube voltage and heart rate variations. American Journal of Roentgenology, 195, 1347–1354.

    Article  Google Scholar 

  57. Hurwitz, L. M., Yoshizumi, T. T., Reiman, R. E., Paulson, E. K., Frush, D. P., Nguyen, G. T., et al. (2006). Radiation dose to the female breast from 16-MDCT body protocols. American Journal of Roentgenology, 186, 1718–1722.

    Article  Google Scholar 

  58. Litmanovich, D., Tack, D., Lin, P. J., Boiselle, P. M., Raptopoulos, V., Bankier A. A., (2011). Female breast, lung, and pelvic organ radiation from dose-reduced 64-MDCT thoracic examination protocols: a phantom study. AJR Am J Roentgenol. 197(4), 929–934. doi: 10.2214/AJR.10.6401.

  59. Deak, P., van Straten, M., Shrimpton, P. C., Zankl, M., & Kalender, W. A. (2008). Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. European Radiology, 18, 759–772.

    Article  Google Scholar 

  60. International Commission on Radiological Protection. (2007a). The 2007 recommendations of the international commission on radiological protection. ICRP Publication 103. Elselvier ed.

    Google Scholar 

  61. Huda, W., Atherton, J. V., Ware, D. E., & Cumming, W. A. (1997). An approach for the estimation of effective radiation dose at CT in pediatric patients. Radiology, 203, 417–422.

    Google Scholar 

  62. Deak, P. D., Smal, Y., & Kalender, W. A. (2010). Sex- and age-specific conversion factors used to determine effective dose from Dose-Length product. Radiology, 257, 158–166.

    Article  Google Scholar 

  63. Cristy, M. (1980). Mathematical phantoms representing children of various ages for use in estimates of internal dose. Report no. ORNL/NUREG/TM-367. Oak Ridge, Tenn: Oak Ridge National Laboratory.

    Google Scholar 

  64. Melo Lima, V. J., Cassola, V. F., Kramer, R., de Oliveira Lira, C. A. B., Khoury, H. J., & Vieira, J. W. (2011). Development of 5- and 10-year-old pediatric phantoms based on polygon mesh surfaces. Medical Physics, 38, 4723–4736.

    Article  ADS  Google Scholar 

  65. Kramer, R., Vieira, J. W., Khoury, H. J., Lima, F. R. A., & Fuelle, D. (2003). All about MAX: A male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Physics in Medicine & Biology, 48, 1239–1262.

    Article  ADS  Google Scholar 

  66. Cassola, V. F., de Melo Lima, V. J., Kramer, R., & Khoury, H. J. (2010). FASH and MASH: Female and male adult human phantoms based on polygon mesh surfaces. Part I: Development of the anatomy. Physics in Medicine & Biology, 55, 133–162.

    Article  ADS  Google Scholar 

  67. Kramer, R., Cassola, V. F., Vieira, J. W., Khoury, H. J., de Oliveira Lira, C. A. B., & Brown, K. R. (2012). Skeletal dosimetry based on CT images of trabecular bone: update and comparisons. Physics in Medicine & Biology, 57, 3995–4021.

    Article  ADS  Google Scholar 

  68. Boone, J. M., Geraghty, E. M., Seibert, J. A., & Wootton-Gorges, S. L. (2003). Dose reduction in pediatric CT: A rational approach. Radiology, 228, 352–360.

    Article  Google Scholar 

  69. Strauss, K. J., Goske, M. J., Frush, D. P., Butler, P. F., & Morrison, G. (2009). Image Gently vendor summit: Working together for better estimates of pediatric radiation dose from CT. American Journal of Roentgenology, 192, 1169–1175.

    Article  Google Scholar 

  70. Cody, D. D., Moxley, D. M., Krugh, K. T., O’Daniel, J. C., Wagner, L. K., & Eftekhari, F. (2004). Strategies for formulating appropriate MDCT techniques when imaging the chest, abdomen, and pelvis in pediatric patients. American Journal Roentgenology, 182, 849–859.

    Article  Google Scholar 

  71. Brisse, H. J., Robilliard, M., Savignoni, A., Pierrat, N., Gaboriaud, G., De Rycke, Y., et al. (2009). Assessment of organ absorbed doses and estimation of effective doses from pediatric anthropomorphic phantom measurements for multi-detector row CT with and without automatic exposure control. Health Physics, 97, 303–314.

    Article  Google Scholar 

  72. Birnbaum, B. A., Hindman, N., Lee, J., & Babb, J. S. (2007). Multi–detector row CT attenuation measurements: Assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology, 242, 109–119.

    Article  Google Scholar 

  73. Birnbaum, B. A., Hindman, N., Lee, J., & Babb, J. S. (2007). Influence of multidetector CT reconstruction algorithm and scanner type in phantom model. Radiology, 244, 767–775.

    Article  Google Scholar 

  74. Wagner, L. K., Lester, R. G., & Saldana, L. R. (1985). Exposure of the pregnant patient to diagnostic radiations: a guide to medical management. Philadelphia: Lippinoott.

    Google Scholar 

  75. Wagner, L. K., Archer, B. R., & Zeck, O. F. (1986). Conceptus dose from state-of-the-artCT scanners. Radiology, 159, 787–792.

    Google Scholar 

  76. Osei, E. K., & Faulkner, K. (1999). Fetal doses from radiological examinations. British Journal of Radiology, 72, 773–780.

    Google Scholar 

  77. Osei, E. K., Darko, J. B., Faulkner, K., & Kotre, C. J. (2003). Software for the estimation of fetal radiation dose to patients and staff in diagnostic radiology. Journal of Radiological Protection, 23, 183–194.

    Article  ADS  Google Scholar 

  78. Osei, E. K., & Faulkner, K. (2000). Radiation risks from exposure to diagnostic x-rays during pregnancy. Radiography, 6, 131–144.

    Article  Google Scholar 

  79. Osei, E. K., & Barnett, R. (2009). Software for the estimation of organ equivalent and effective doses from diagnostic radiology procedures. Journal of Radiological Protection, 29, 361–376.

    Article  ADS  Google Scholar 

  80. Osei, E. K., & Darko, J. (2013). A survey of organ equivalent and effective doses from diagnostic radiology procedures. ISRN Radiology, 2013, 1–9.

    Google Scholar 

  81. Felmlee, J. P., Gray, J. E., Leetzow, M. L., & Price, J. C. (1990). Estimated fetal radiation dose from multislice CT studies. American Journal of Roentgenology, 154, 185–190.

    Article  Google Scholar 

  82. Dietrich, M. F., Miller, K. L., & King, S. H. (2005). Determination of potential uterine (conceptus) doses from axial and helical CT scans. Health Physics, 88, S10–S13.

    Article  Google Scholar 

  83. Hurwitz, L. M., Yoshizumi, T., Reiman, R. E., Goodman, P. C., Paulson, E. K., Frush, D. P., et al. (2006). Radiation dose to the fetus from body MDCT during early gestation. American Journal of Roentgenology, 186, 871–876.

    Article  Google Scholar 

  84. Jaffe, T. A., Neville, A. M., Anderson-Evans, C., Long, S., Lowry, C., Yoshizumi, T. T., et al. (2009). Early first trimester fetal dose estimation method in a multivendor study of 16- and 64-mdct scanners and low-dose imaging protocols. American Journal of Roentgenology, 193, 1019–1024.

    Article  Google Scholar 

  85. Jaffe, T. A., Yoshizumi, T. T., Toncheva, G. I., Nguyen, G., Hurwitz, L. M., & Nelson, R. C. (2008). Early first-trimester fetal radiation dose estimation in 16-MDCT without and with automated tube current modulation. American Journal of Roentgenology, 190, 860–864.

    Article  Google Scholar 

  86. Gilet, A. G., Dunkin, J. M., Fernandez, T. J., Button, T. M., & Budorick, N. E. (2011). Fetal radiation dose during gestation estimated on an anthropomorphic phantom for three generations of CT scanners. American Journal of Roentgenology, 196, 1133–1137.

    Article  Google Scholar 

  87. Wang, J., Christner, J. A., Duan, X., Leng, S., Yu, L., & McCollough, C. H. (2012). Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images. Medical Physics, 39, 6678–6772.

    Google Scholar 

  88. Peng, G., Zeng, Y., Luo, T., Zhao, F., Peng, S., You, R., et al. (2012). Organ dose evaluation for multi-slice spiral ct scans based on China Sichuan chest anthropomorphic phantom measurements. Radiation Protection Dosimetry, 150, 292–297.

    Article  Google Scholar 

  89. McCollough, C.H. (2011). Translating protocols across patient size: Babies to bariatric. Lecture in the 2011 AAPM Summit on CT Dose. October 7–8 2011, Denver, CO.

    Google Scholar 

  90. Duan, X., Wang, J., Christner, J. A., Leng, S., Grant, K. L., & McCollough, C. H. (2011). Dose reduction to anterior surfaces with organ-based tube-current modulation: Evaluation of performance in a phantom study. American Journal of Roentgenology, 197, 689–695.

    Article  Google Scholar 

  91. Matsubara, K., Koshida, K., Ichikawa, K., Suzuki, M., Takata, T., Yamamoto, T., et al. (2009). Misoperation of CT automatic tube current modulation systems with inappropriate patient centering: Phantom studies. American Journal of Roentgenology, 192, 862–865.

    Article  Google Scholar 

  92. Kalender, W. A., Wolf, H., & Suess, C. (1999). Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Medical Physics, 26, 2248–2253.

    Article  ADS  Google Scholar 

  93. Keat, N. (2005). CT scanner automatic exposure control system. ImPACT report 05016. MHRA reports, London.

    Google Scholar 

  94. Flohr, T. G., Bruder, H., Stierstorfer, K., Petersilka, M., Schmidt, B., & McCollough, C. H. (2008). Image reconstruction and image quality evaluation for a dual source CT scanner. Medical Physics, 35, 5882–5897.

    Article  Google Scholar 

  95. McCollough, C. H., Primak, A. N., Saba, O., Bruder, H., Stierstorfer, K., Raupach, R., et al. (2007). Dose performance of a 64-channel dual-source CT scanner. Radiology, 243, 775–784.

    Article  Google Scholar 

  96. Capeleti, F.F., Melo, C.S., Furquim, T.A.C., Nersissian, D.Y. (2011). Phantom development for quality control in automatic exposure control in computed tomography systems. Poster Presented on 18 th International Conference of Medical Physics, April 17–20 2011, Porto Alegre, Brazil.

    Google Scholar 

  97. Morehouse, C. C., Brody, W. R., Guthaner, D. F., Breiman, R. S., & Harell, G. S. (1980). Gated cardiac computed tomography with a motion phantom. Radiology, 134, 213–217.

    Google Scholar 

  98. Boll, D. T., Merkle, E. M., Paulson, E. K., & Fleiter, T. R. (2008). Dual-Energy multidetector CT assessment in a pilot study with anthropomorphic phantom. Radiology, 247, 687–695.

    Article  Google Scholar 

  99. Driscoll, B., Coolens, C., & Keller, H. (2011). Quantitative DCE-CT imaging quality assurance with a novel dynamic flow phantom. Medical Physics, 38, 3874.

    Article  ADS  Google Scholar 

  100. Horiguchi, J., Kiguchi, M., Fujioka, C., Shen, Y., Arie, R., Sunasaka, K., et al. (2008). Radiation dose, image quality, stenosis measurement, and CT densitometry using ECG-Triggered coronary 64-MDCT angiography: A phantom study. American Journal of Roentgenology, 190, 315–320.

    Article  Google Scholar 

  101. Nosratieh, A., Yang, K., Aminololama-Shakeri, S., & Boone, J. M. (2012). Comprehensive assessment of the slice sensitivity profiles in breast tomosynthesis and breast CT. Medical Physics, 39, 7254–7261.

    Article  ADS  Google Scholar 

  102. Szegedi, M., Szegedi, P. R., Sarkar, V., Hinkle, J., Wang, B., Huang, Y., et al. (2012). Tissue characterization using a phantom to validate four-dimensional tissue deformation. Medical Physics, 39, 6065–6070.

    Article  Google Scholar 

  103. McNitt-Gray, M. (2013). CT dose measurements. Lecture presented at Hands-on Workshop for Physicists. MD Anderson Cancer Center, February 8–10, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Costa, P.R. (2014). Computer Tomography Phantom Applications. In: DeWerd, L., Kissick, M. (eds) The Phantoms of Medical and Health Physics. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8304-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8304-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8303-8

  • Online ISBN: 978-1-4614-8304-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics