Skip to main content

Estrogen Effects on Skeletal Muscle

  • Chapter
  • First Online:
Integrative Biology of Women’s Health

Abstract

In the past several decades the importance of the sex hormone estrogen for the overall health and well-being of skeletal muscle has become apparent, particularly for women, but also in men. In the early 1990s an article appeared indicating that skeletal muscle may be an estrogen (E2) target and that E2 impacted muscle strength. This seminal article was published by Phillips et al. [1] and indicated that women who were on hormone replacement therapy (HRT) through the menopause maintained the strength (force/muscle mass) of their adductor pollicis muscle compared with women who were not on HRT. Findings suggested that E2 provided a protective effect on muscle strength loss with aging that was maintained until women were approximately 70 years of age. Since that time hundreds of studies have been conducted and our understanding of E2 effects on skeletal muscle has grown substantially. The purpose of this chapter is to summarize recent findings on known E2 effects on skeletal muscle but also indicate some of the questions that remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC (1993) Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci (Lond) 84:95–98

    CAS  Google Scholar 

  2. Lieberman SA, Oberoi AL, Gilkison CR, Masel BE, Urban RJ (2001) Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J Clin Endocrinol Metab 86(6):2752–2756

    Article  PubMed  CAS  Google Scholar 

  3. Sheffield-Moore M, Urban RJ (2004) An overview of the endocrinology of skeletal muscle. Trends Endocrinol Metab 15(3):110–115

    Article  PubMed  CAS  Google Scholar 

  4. Vernikos J, Dallman MF, Keil LC, O'Hara D, Convertino VA (1993) Gender differences in endocrine responses to posture and 7 days of −6 degrees head-down bed rest. Am J Physiol 265(1 Pt 1):E153–E161

    PubMed  CAS  Google Scholar 

  5. Sternfeld B, Bhat AK, Wang H, Sharp T, Quesenberry CP (2005) Menopause, physical activity, and body composition/fat distribution in midline women. Med Sci Sports Exerc 37:1195–1202

    Article  PubMed  Google Scholar 

  6. Sipila S (2003) Body composition and muscle performance during menopause and hormone replacement therapy. J Endocrinol Invest 26(9):893–901

    PubMed  CAS  Google Scholar 

  7. Vernikos J, Schneider VS (2010) Space, gravity and the physiology of aging: parallel or convergent disciplines? a mini-review. Gerontology 56(2):157–166

    Article  PubMed  Google Scholar 

  8. Greeves JP, Cable NT, Reilly R, Kingsland C (1999) Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci 97:79–84

    Article  PubMed  CAS  Google Scholar 

  9. Rolland YM, Perry HM, Patrick P, Banks WA, Morley JE (2007) Loss of appendicular muscle mass and loss of muscle strength in young postmenopausal women. J Gerontol A Biol Sci Med Sci 62A:330–335

    Article  Google Scholar 

  10. Taaffe DR et al (2005) Estrogen replacement, muscle composition, and physical function: The Health ABC Study. Med Sci Sports Exerc 37(10):1741–1747

    Article  PubMed  CAS  Google Scholar 

  11. Chen Z, Bassford T, Green SB et al (2005) Postmenopausal hormone therapy and body composition: a substudy of the estrogen plus progestin trial of the Women's Health Initiative. Am J Clin Nutr 82:651–656

    PubMed  CAS  Google Scholar 

  12. Ronkainen PHA, Kovanen V, Alen M et al (2009) Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J Appl Physiol 107:25–33

    Article  PubMed  CAS  Google Scholar 

  13. Douchi T, Kuwahata R, Yamasaki H, Yamamoto S, Oki T, Nakae M, Nagata Y (2002) Inverse relationship between the changes in trunk lean and fat mass during gonadotropin-releasing hormone agonist therapy. Maturitas 42:31–35

    Article  PubMed  CAS  Google Scholar 

  14. Kenny AM, Dawson L, Kleppinger A, Ianuzzi-Sucich M, Judge JO (2003) Prevalence of sarcopenia and predictors of skeletal muscle mass in nonobese women who are long-term users of estrogen-replacement therapy. J Gerontol A Biol Sci Med Sci 58:M436–M440

    Article  PubMed  Google Scholar 

  15. Horstman AM, Dillon EL, Urban RJ, Sheffield-Moore M (2012 Nov) The role of androgens and estrogens on healthy aging and longevity. J Gerontol A Biol Sci Med Sci 67:1140–1152

    Article  PubMed  Google Scholar 

  16. Moran AL, Warren GL, Lowe DA (2006) Removal of ovarian hormones from mature mice detrimentally affects muscle contractile function and myosin structural distribution. J Appl Physiol 100(2):548–559

    Article  PubMed  CAS  Google Scholar 

  17. Moran AL et al (2007) Estradiol replacement reverses ovariectomy-induced muscle contractile and myosin dysfunction in mature female mice. J Appl Physiol 102(4):1387–1393

    Article  PubMed  CAS  Google Scholar 

  18. Greising SM et al (2009) Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 64(10):1071–1081

    Article  PubMed  Google Scholar 

  19. Brown M et al (2009) Estrogen receptor-alpha and -beta and aromatase knockout effects on lower limb muscle mass and contractile function in female mice. Am J Physiol Endocrinol Metab 296(4):E854–E861

    Article  PubMed  CAS  Google Scholar 

  20. van Geel TACM, Geusens PP, Winkens B, Sels J-PJE, Dinant G-J (2009) Measures of bioavailable serum testosterone and estradiol and their relationships with muscle mass, muscle strength and bone mineral density in postmenopausal women: a cross-sectional study. Eur J Endocrinol 160:681–687

    Article  PubMed  Google Scholar 

  21. Petrella J, Kim JS, Tuggle SC, Hall SR, Bamman MM (2005) Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol 98:211–219

    Article  PubMed  Google Scholar 

  22. Sipila S, Poutamo J (2003) Muscle performance, sex hormones and training in peri-menopausal and post-menopausal women. Scand J Med Sci Sports 13:19–25

    Article  PubMed  CAS  Google Scholar 

  23. Taafe DR, Sipila S, Cheng S, Populakka J, Toivanen J, Souminen H (2005) The effect of hormone replacement therapy and/or exercise on skeletal muscle attenuation in postmenopausal women: a yearlong intervention. Clin Physiol Funct Imaging 25:297–304

    Article  Google Scholar 

  24. Brown M, Birge S, Kohrt WM (1997) Hormone replacement does not augment gains in muscle strength or fat-free mass in response to weight-bearing exercise. J Gerontol A Biol Sci Med Sci 52:B166–B170

    Article  PubMed  CAS  Google Scholar 

  25. Greising SM, Baltgalvis KA, Kosir AM, Moran AL, Warren GL, Lowe DA (2011) Estradiol's beneficial on murine muscle function is independent of muscle activity. J Appl Physiol 110:109–115

    Article  PubMed  CAS  Google Scholar 

  26. Wiik A, Hellsten Y, Berthelson P, Lundholm L, Fischer H, Jansson E (2008) Activation of estrogen response elements is mediated both via estrogen and muscle contractions in rat skeletal muscle myotubes. Am J Physiol Cell physiol 296:C215–C220

    Article  PubMed  Google Scholar 

  27. Galuzzo P, Rastellli C, Bulzomi P, Acconcia F, Pallottini V, Marino M (2009) 17-β-Estradiol regulates the first steps of skeletal muscle cell differentation via ERα-mediated signals. Am J Physiol Cell Physiol 297:C1249–C1262

    Article  Google Scholar 

  28. Baltgalvis KA, Greising SM, Warren GL, Lowe DA (2010) EStrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS One 5:1–11

    Article  Google Scholar 

  29. Dieli-Conwright CM et al (2010) Hormone replacement therapy and messenger RNA expression of estrogen receptor coregulators after exercise in postmenopausal women. Med Sci Sports Exerc 42(3):422–429

    Article  PubMed  CAS  Google Scholar 

  30. Petterson K, Delaunay F, Gustafsson J-A (2000) Estrogen receptor β acts as a dominant regulator of estrogen signaling. Oncogene 19:4970–4978

    Article  Google Scholar 

  31. Kahlert S, Grohe C, Karas RH, Lobbert K, Neyses L, Vetter H (1997) Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun 232:373–378

    Article  PubMed  CAS  Google Scholar 

  32. Boland R, Vasconsuelo A, Milanesi L, Ronda AC, Boland AR (2008) 17β-estradiol signaling in skeletal muscle cells and its relationshiop to apoptosis. Steroids 73:859–863

    Article  PubMed  CAS  Google Scholar 

  33. Hagberg JM, McCole SD, Ferrell RE, Zmuda JM, Rodgers KS, Wilund KR, Moore GE (2003) Physical activity, hormone replacement therapy and plasma lipoprotein-lipid levels in postmenopausal women. Int J Sports Med 24:22–29

    Article  PubMed  CAS  Google Scholar 

  34. Eckel LA, Moore SR (2004) Diet-induced hyperphasia in the rat is influenced by sex and exercise. Am J Physiol Regul Integr Comp Physiol 287:R1080–R1085

    Article  PubMed  CAS  Google Scholar 

  35. Tou J, Wade CE (2002) Determinants affecting physical activity levels in animal models. Exp Biol Med 227:587–600

    CAS  Google Scholar 

  36. Tiidus PM, Deller M, Liu XL (2005) Oestrogen influence on myogenic satellite cells following downhill running in male rats: a preliminary study. Acta Physiol Scand 184(1):67–72

    Article  PubMed  CAS  Google Scholar 

  37. Enns DL, Tiidus PM (2008) Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol 104(2):347–353

    Article  PubMed  Google Scholar 

  38. Thomas A, Bunyan K, Tiidus PM (2010) Oestrogne receptor-alpha activation augments post-exercise myoblast proliferation. Acta Physiol 198:81–89

    Article  CAS  Google Scholar 

  39. Dieli-Conwright CM, Spektor TM, Rice JC, Schroeder ET (2009) Hormone therapy attenuates exercise-indiced skeletal muscle damage in postmenopausal women. J Appl Physiol 107:853–858

    Article  PubMed  CAS  Google Scholar 

  40. Brown M, Foley A, Ferreria JA (2005) Ovariectomy, hindlimb unweighting, and recovery effects on skeletal muscle in adult rats. Aviat Space Environ Med 76(11):1012–1018

    PubMed  Google Scholar 

  41. Sitnick M et al (2006) Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol 100(1):286–293

    Article  PubMed  CAS  Google Scholar 

  42. McClung JM et al (2006) Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol 100:2012–2023

    Article  PubMed  CAS  Google Scholar 

  43. Rothman MS, Arciniegas DB, Filley CM, Wierman ME (2007) The neuroendocrine effects of traumatic brain injury. J Neuropsychiatry Clin Neurosci 19:363–372

    Article  PubMed  CAS  Google Scholar 

  44. Sugiura T et al (2006) Estrogen administration attenuates immobilization-induced skeletal muscle atrophy in male rats. J Physiol Sci 56:393–399

    Article  PubMed  CAS  Google Scholar 

  45. Wierman ME, Kohrt WM (2007) Vascular and metabolic effects of sex steroids: new insights into clinical trials. Reprod Sci 14:300–314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marybeth Brown Ph.D., P.T. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brown, M. (2013). Estrogen Effects on Skeletal Muscle. In: Spangenburg, E. (eds) Integrative Biology of Women’s Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8630-5_3

Download citation

Publish with us

Policies and ethics