Skip to main content

Abstract

Anesthesiology, like any other specialty in medicine, is continuously evolving. Perhaps the most important changes are driven by applications of physics leading to improved monitoring, as well as by advances in pharmacology (e.g., improved understanding of drug targets). TIVA (total intravenous anesthesia) is an extension of the concept of balanced anesthesia using real-time pharmacokinetic modeling, delivering all anesthetic drugs via intravenous route targeted to achieve optimal operating conditions with maximal patient comfort and safety. However, there is a natural reluctance among physicians, in general, and anesthesiologists, in particular, to change their practice unless the advantages are striking or the established techniques are proven unsafe. This is probably the main reason why intravenous anesthesia is not being embraced as fondly as one might have expected. Coupled with this, the issues related to modalities of administration are not yet perfected and the pharmacological principles on which they are based are constantly evolving. The aim of the chapter is to explore briefly the intricacies of intravenous anesthesia, examine the potential advantages, briefly review the disadvantages, and wrap up with the areas where it is inevitable and areas where it is immensely useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagelhout JJ, Plaus K. Nurse anesthesia. Philadelphia: Elsevier Health Sciences; 2009.

    Google Scholar 

  2. Guit JB, Koning HM, Coster ML, Niemeijer RP, Mackie DP. Ketamine as analgesic for total intravenous anaesthesia with propofol. Anaesthesia. 1991;46(1):24–7.

    Article  CAS  PubMed  Google Scholar 

  3. Minto CF, Schnider TW. Contributions of PK/PD modeling to intravenous anesthesia. Clin Pharmacol Ther. 2008;84(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  4. Shafer SL, Stanski DR. Defining depth of anesthesia. Handb Exp Pharmacol. 2008;182:409–23.

    Article  CAS  PubMed  Google Scholar 

  5. Absalom AR, Mani V, De Smet T, Struys MMRF. Pharmacokinetic models for propofol–defining and illuminating the devil in the detail. Br J Anaesth. 2009;103(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  6. Bressan N, Moreira AP, Amorim P, Nunes CS. Target controlled infusion algorithms for anesthesia: theory vs practical implementation. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6234–7.

    PubMed  Google Scholar 

  7. Hijazi Y, Bodonian C, Bolon M, Salord F, Boulieu R. Pharmacokinetics and haemodynamics of ketamine in intensive care patients with brain or spinal cord injury. Br J Anaesth. 2003;90(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  8. Iirola T, Ihmsen H, Laitio R, Kentala E, Aantaa R, Kurvinen J-P, et al. Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. Br J Anaesth. 2012;108(3):460–8.

    Article  CAS  PubMed  Google Scholar 

  9. Levitt DG, Schnider TW. Human physiologically based pharmacokinetic model for propofol. BMC Anesthesiol. 2005;5(1):4.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Masui K, Upton RN, Doufas AG, Coetzee JF, Kazama T, Mortier EP, et al. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg. 2010;111(2):368–79.

    Article  CAS  PubMed  Google Scholar 

  11. Bienert A, Wiczling P, Grześkowiak E, Cywiński JBJ, Kusza K. Potential pitfalls of propofol target controlled infusion delivery related to its pharmacokinetics and pharmacodynamics. Pharmacol Rep. 2012;64(4):782–95.

    Article  CAS  PubMed  Google Scholar 

  12. Sear JW, Glen JB. Propofol administered by a manual infusion regimen. Br J Anaesth. 1995;74(4):362–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kim HS, Park HJ, Kim CS, Lee JR. Combination of propofol and remifentanil target-controlled infusion for laryngeal mask airway insertion in children. Minerva Anestesiol. 2011;77(7):687–92.

    CAS  PubMed  Google Scholar 

  14. Russell D, Wilkes MP, Hunter SC, Glen JB, Hutton P, Kenny GN. Manual compared with target-controlled infusion of propofol. Br J Anaesth. 1995;75(5):562–6.

    Article  CAS  PubMed  Google Scholar 

  15. Ithnin F, Lim Y, Shah M, Shen L, Sia ATH. Tracheal intubating conditions using propofol and remifentanil target-controlled infusion: a comparison of remifentanil EC50 for Glidescope and Macintosh. Eur J Anaesthesiol. 2009;26(3):223–8.

    Article  CAS  PubMed  Google Scholar 

  16. Maruyama K, Nishikawa Y, Nakagawa H, Ariyama J, Kitamura A, Hayashida M. Can intravenous atropine prevent bradycardia and hypotension during induction of total intravenous anesthesia with propofol and remifentanil? J Anesth. 2010;24(2):293–6.

    Article  PubMed  Google Scholar 

  17. Ouattara A, Boccara G, Lemaire S, Köckler U, Landi M, Vaissier E, et al. Target-controlled infusion of propofol and remifentanil in cardiac anaesthesia: influence of age on predicted effect-site concentrations. Br J Anaesth. 2003;90(5):617–22.

    Article  CAS  PubMed  Google Scholar 

  18. Nordström O, Engström AM, Persson S, Sandin R. Incidence of awareness in total i.v. anaesthesia based on propofol, alfentanil and neuromuscular blockade. Acta Anaesthesiol Scand. 1997;41(8):978–84.

    Article  PubMed  Google Scholar 

  19. Bailey JM. Context-sensitive half-times: what are they and how valuable are they in anaesthesiology? Clin Pharmacokinet. 2002;41(11):793–9.

    Article  PubMed  Google Scholar 

  20. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  21. Bürkle H, Dunbar S, Van Aken H. Remifentanil: a novel, short-acting, mu-opioid. Anesth Analg. 1996;83(3):646–51.

    PubMed  Google Scholar 

  22. Coskun D, Celebi H, Karaca G, Karabiyik L. Remifentanil versus fentanyl compared in a target-controlled infusion of propofol anesthesia: quality of anesthesia and recovery profile. J Anesth. 2010;24(3):373–9.

    Article  PubMed  Google Scholar 

  23. Mingo OH, Ashpole KJ, Irving CJ, Rucklidge MWM. Remifentanil sedation for awake fibreoptic intubation with limited application of local anaesthetic in patients for elective head and neck surgery. Anaesthesia. 2008;63(10):1065–9.

    Article  CAS  PubMed  Google Scholar 

  24. Komatsu R, Turan AM, Orhan-Sungur M, McGuire J, Radke OC, Apfel CC. Remifentanil for general anaesthesia: a systematic review. Anaesthesia. 2007;62(12):1266–80.

    Article  CAS  PubMed  Google Scholar 

  25. Suttner S, Boldt J, Schmidt C, Piper S, Kumle B. Cost analysis of target-controlled infusion-based anesthesia compared with standard anesthesia regimens. Anesth Analg. 1999;88(1):77–82.

    CAS  PubMed  Google Scholar 

  26. Alhashemi JA, Miller DR, O’Brien HV, Hull KA. Cost-effectiveness of inhalational, balanced and total intravenous anaesthesia for ambulatory knee surgery. Can J Anaesth. 1997;44(2):118–25.

    Article  CAS  PubMed  Google Scholar 

  27. Sung YF, Reiss N, Tillette T. The differential cost of anesthesia and recovery with propofol-nitrous oxide anesthesia versus thiopental sodium-isoflurane-nitrous oxide anesthesia. J Clin Anesth. 1991;3(5):391–4.

    Article  CAS  PubMed  Google Scholar 

  28. Sneyd JR, Holmes KA. Inhalational or total intravenous anaesthesia: is total intravenous anaesthesia useful and are there economic benefits? Curr Opin Anaesthesiol. 2011;24(2):182–7.

    Article  PubMed  Google Scholar 

  29. Dong Y, Zhang G, Zhang B, Moir RD, Xia W, Marcantonio ER, et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol. 2009;66(5):620–31.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Tang J, Eckenhoff MF, Eckenhoff RG. Anesthesia and the old brain. Anesth Analg. 2010;110(2):421–6.

    Article  PubMed  Google Scholar 

  31. Wei H, Liang G, Yang H, Wang Q, Hawkins B, Madesh M, et al. The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. Anesthesiology. 2008;108(2):251–60.

    Article  CAS  PubMed  Google Scholar 

  32. Wrońska-Nofer T, Palus J, Krajewski W, Jajte J, Kucharska M, Stetkiewicz J, et al. DNA damage induced by nitrous oxide: study in medical personnel of operating rooms. Mutat Res. 2009;666(1–2):39–43.

    Article  PubMed  Google Scholar 

  33. Boivin JF. Risk of spontaneous abortion in women occupationally exposed to anaesthetic gases: a meta-analysis. Occup Environ Med. 1997;54(8):541–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Goudra BG, Mandel JE. Target-controlled infusions/patient-controlled sedation. Tech Gastrointest Endosc. 2009;11(4):181–7.

    Article  Google Scholar 

  35. Sulbaek Andersen MP, Nielsen OJ, Wallington TJ, Karpichev B, Sander SP. Medical intelligence article: assessing the impact on global climate from general anesthetic gases. Anesth Analg. 2012;114(5):1081–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basavana Gouda Goudra MD, FRCA, FCARCSI .

Editor information

Editors and Affiliations

Chemical Structures

Chemical Structures

Chemical Structure 4.1
figure 2

Propofol

Chemical Structure 4.2
figure 3

Remifentanil

Chemical Structure 4.3
figure 4

Desflurane

Chemical Structure 4.4
figure 5

Fentanyl

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goudra, B.G., Singh, P.M. (2015). Principles of Total Intravenous Anesthesia. In: Kaye, A., Kaye, A., Urman, R. (eds) Essentials of Pharmacology for Anesthesia, Pain Medicine, and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8948-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8948-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8947-4

  • Online ISBN: 978-1-4614-8948-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics