Skip to main content

What Is Amblyopia?

  • Chapter
  • First Online:
Visual Development

Abstract

Amblyopia is defined primarily as a loss of acuity. In anisometropia, grating acuity, Snellen (optotype) acuity, and vernier acuity are degraded in proportion to each other. In strabismus, Snellen and vernier acuity are degraded more than grating acuity. The main problem in both cases is loss of binocular function, producing loss of stereoscopic vision. A number of other properties are also affected. There is uncertainty about the location of an object in space, a reduction in the ability to detect shapes, deficits in motion and direction perception, less ability to track several objects at once, reduced counting ability, and suppression of the image in one eye by the image in the other, to avoid the diplopia and confusion arising when the two eyes are looking in different directions. Some of these deficits are seen in the fellow as well as the amblyopic eye and in binocular viewing. There are also deficits in eye movements: poor fixation, a longer latency for saccades, inability to follow an object moving away from the nose smoothly, and slow inaccurate movements in visually guided reaches. These particularly affect reading so that an amblyope’s reading speed in both eyes is one-half to three-quarters of that of a normal person.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaen-Stockdale C, Ledgeway T, Hess RF (2007) Second-order optic flow deficits in amblyopia. Invest Ophthalmol Vis Sci 48:5532–5538

    Article  PubMed  Google Scholar 

  • Barrett BT, Pacey IE, Bradley A, Thibos LN, Morrill P (2003) Nonveridical visual perception in human amblyopia. Invest Ophthalmol Vis Sci 44:1555–1567

    Article  PubMed  Google Scholar 

  • Birch E (2013) Amblyopia and binocular vision. Prog Retin Eye Res 33:67–84

    Article  PubMed  Google Scholar 

  • Bouma H (1970) Interaction effects in parafoveal letter recognition. Nature 226:177–178

    Article  PubMed  CAS  Google Scholar 

  • Bradley A, Freeman RD (1981) Contrast sensitivity in anisometropic amblyopia. Invest Ophthalmol 21:467–476

    CAS  Google Scholar 

  • Daw NW (1962) Why after-images are not seen in normal circumstances. Nature 196:1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Demanins R, Wang YZ, Hess RF (1999) The neural deficit in strabismic amblyopia: sampling considerations. Vis Res 39:3575–3585

    Article  PubMed  CAS  Google Scholar 

  • Ellemberg D, Lewis TL, Maurer D, Brar S, Brent HP (2002) Better perception of global motion after monocular than after binocular deprivation. Vis Res 42:169–179

    Article  PubMed  Google Scholar 

  • Enoch JM, Berger R, Birns R (1970) A static perimetric technique believed to test receptive field properties: extension and verification of the analysis. Doc Ophthalmol 29:127–153

    Article  PubMed  CAS  Google Scholar 

  • Fischer J, Whitney D (2011) Object-level visual information gets through the bottleneck of crowding. J Neurophysiol 106:1389–1398

    Article  PubMed  Google Scholar 

  • Flom MC, Bedell HE (1985) Identifying amblyopia using associated conditions, acuity, and nonacuity features. Am J Optom Physiol Opt 62:153–160

    Article  PubMed  CAS  Google Scholar 

  • Flom MC, Weymouth FW, Kahneman D (1963) Visual resolution and contour interaction. J Opt Soc Am 53:1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Freeman AW, Nguyen VA, Jolly N (1996) Components of visual acuity loss in strabismus. Vis Res 36:765–774

    Article  PubMed  CAS  Google Scholar 

  • Gstalder RJ, Green DG (1971) Laser interferometric acuity in amblyopia. Journal Pediatr Ophthalmol Strabismus 8:251–256

    Google Scholar 

  • Harrad R (1996) Psychophysics of suppression. Eye 10:270–273

    Article  PubMed  Google Scholar 

  • Hayward J, Truong G, Partanen M, Giaschi D (2011) Effects of speed, age, and amblyopia on the perception of motion-defined form. Vis Res 51:2216–2223

    Article  PubMed  Google Scholar 

  • Hess RF (1977) On the relationship between strabismic amblyopia and eccentric fixation. Br J Ophthalmol 61:767–773

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Daw NW (2009) Amblyopia. In: Levin LA, Albert DM (eds) Ocular Disease: Mechanisms and Management. Saunders Ltd., New York

    Google Scholar 

  • Hess RF, Holliday IE (1992) The spatial localization deficit in amblyopia. Vis Res 32:1319–1339

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Jacobs RJ (1979) A preliminary report of acuity and contour interaction across the amblyope's visual field. Vis Res 19:1403–1408

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Pointer JS (1985) Differences in the neural basis of human amblyopia: the distribution of the anomaly across the visual field. Vis Res 25:1577–1594

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Campbell FW, Greenhalgh T (1978) On the nature of the neural abnormality in human amblyopia; neural aberrations and neural sensitivity loss. Pflugers Arch 377:201–207

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Field DJ, Watt RJ (1990) The puzzle of amblyopia. In: Blakemore C (ed) Vision: coding and efficiency. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hess RF, Wang YZ, Demanins R, Wilkinson F, Wilson HR (1999) A deficit in strabismic amblyopia for global shape detection. Vis Res 39:901–914

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Dakin SC, Tewfik M, Brown B (2001) Contour interaction in amblyopia: scale selection. Vis Res 41:2285–2296

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Barnes G, Dumoulin SO, Dakin SC (2003a) How many positions can we perceptually encode, one or many? Vis Res 43:1575–1587

    Article  PubMed  CAS  Google Scholar 

  • Hess RF, Pointer JS, Simmers A, Bex PJ (2003b) Border distinctness in amblyopia. Vis Res 43:2255–2264

    Article  PubMed  Google Scholar 

  • Ho CS, Giaschi DE (2007) Stereopsis-dependent deficits in maximum motion displacement in strabismic and anisometropic amblyopia. Vision Res 47 (21):2778–2785

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1960) Receptive fields of optic nerve fibres in the spider monkey. J Physiol 154:572–580

    PubMed  CAS  Google Scholar 

  • Husk JS, Farivar R, Hess RF (2012) Amblyopic deficits in processing structure-from-motion. J Vis 12:4

    Article  PubMed  Google Scholar 

  • Irvine SR (1948) Amblyopia ex anopsia. Observations on retinal inhibition, scotoma, projection, light difference discrimination and visual acuity. Trans Am Ophthalmol Soc 66:527–575

    Google Scholar 

  • Jeffrey BG, Wang YZ, Birch EE (2004) Altered global shape discrimination in deprivation amblyopia. Vis Res 44:167–177

    Article  PubMed  Google Scholar 

  • Kanonidou E, Proudlock FA, Gottlob I (2010) Reading strategies in mild to moderate strabismic amblyopia: an eye movement investigation. Invest Ophthalmol Vis Sci 51:3502–3508

    Article  PubMed  Google Scholar 

  • Katz B, Sireteanu R (1990) The Teller acuity card test: a useful method for the clinical routine? Clin Vis Sci 5:307–323

    Google Scholar 

  • Lai XJ, Alexander J, He M, Yang Z, Suttle C (2011) Visual functions and interocular interactions in anisometropic children with and without amblyopia. Invest Ophthalmol Vis Sci 52:6849–6859

    Article  PubMed  Google Scholar 

  • Le Grand R, Mondloch CJ, Maurer D, Brent HP (2001) Neuroperception. Early visual experience and face processing. Nature 410:890

    Article  PubMed  Google Scholar 

  • Levi DM (2007) Image segregation in strabismic amblyopia. Vis Res 47:1833–1838

    Article  PubMed  Google Scholar 

  • Levi DM, Klein S (1982) Hyperacuity and amblyopia. Nature 298:268–270

    Article  PubMed  CAS  Google Scholar 

  • Levi DM, Klein SA (1983) Spatial localization in normal and amblyopic vision. Vis Res 23:1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Levi DM, Klein SA (1985) Vernier acuity, crowding and amblyopia. Vis Res 25:979–991

    Article  PubMed  CAS  Google Scholar 

  • Levi DM, Klein SA (1986) Sampling in spatial vision. Nature 320:360–362

    Article  PubMed  CAS  Google Scholar 

  • Levi DM, Klein SA (1990a) Visual acuity in strabismic and anisometropic amblyopia: a tale of two syndromes. Ophthalmol Clin North Am 3:289–301

    Google Scholar 

  • Levi DM, Klein SA (1990b) Equivalent intrinsic blur in spatial vision. Vis Res 30:1971–1993

    Article  PubMed  CAS  Google Scholar 

  • Levi DM, Polat U (1996) Neural plasticity in adults with amblyopia. Proc Nat Acad Sci U S A 93:6830–6834

    Article  CAS  Google Scholar 

  • Levi DM, McKee SP, Movshon JA (2011) Visual deficits in anisometropia. Vis Res 51:48–57

    Article  PubMed  Google Scholar 

  • Levi DM, Song S, Pelli DG (2007) Amblyopic reading is crowded. J Vis 7(2):21–17

    Google Scholar 

  • Lewis TL, Ellemberg D, Maurer D, Wilkinson F, Wilson HR, Dirks M, Brent HP (2002) Sensitivity to global form in glass patterns after early visual deprivation in humans. Vis Res 42:939–948

    Article  PubMed  Google Scholar 

  • Lions C, Bui-Quoc E, Seassau M, Bucci MP (2013) Binocular coordination of saccades during reading in strabismic children. Invest Ophthalmol Vis Sci 54:620–628

    Article  PubMed  Google Scholar 

  • Maurer D, Lewis TL (1993) Visual outcomes after infantile cataract. In: Simons K (ed) Early visual development, normal and abnormal. Oxford University Press, New York, pp 454–484

    Google Scholar 

  • Maxwell GF, Lemij HG, Collewijn H (1995) Conjugacy of saccades in deep amblyopia. Invest Ophthalmol Vis Sci 36:2514–2522

    PubMed  CAS  Google Scholar 

  • McKee SP, Westheimer G (1978) Improvement in vernier acuity with practice. Percept Psychophys 24:258–262

    Article  PubMed  CAS  Google Scholar 

  • McKee SP, Levi DM, Movshon JA (2003) The pattern of visual deficits in amblyopia. J Vis 3:380–405

    Article  PubMed  Google Scholar 

  • Niechwiej-Szwedo E, Goltz HC, Chandrakumar M, Hirji ZA, Wong AMF (2010) Effect of anisometropic amblyopia in visuomotor behavior, I: saccadic eye movements. Invest Ophthalmol Vis Sci 51:6348–6354

    Article  PubMed  Google Scholar 

  • Niechwiej-Szwedo E, Kennedy SA, Colpa L, Chandrakumar M, Goltz HC, Wong AM (2012) Effects of induced monocular blur versus anisometropic amblyopia on saccades, reaching, and eye-hand coordination. Invest Ophthalmol Vis Sci 53:4354–4362

    Article  PubMed  Google Scholar 

  • Ono S, Das VE, Mustari MJ (2012) Conjugate adaptation of smooth pursuit during monocular viewing in strabismic monkeys with exotropia. Invest Ophthalmol Vis Sci 53:2038–2045

    Article  PubMed  Google Scholar 

  • Pelli DG, Tillman KA (2008) The uncrowded window of object recognition. Nat Neurosci 11:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Pelli DG, Robson JG, Wilkins AJ (1988) The design of a new letter chart for measuring contrast sensitivity. Clin Vis Sci 2:187–199

    Google Scholar 

  • Pelli DG, Levi DM, Chung STL (2004) Using visual noise to characterize amblyopic letter identification. J Vis 4:904–920

    Article  PubMed  Google Scholar 

  • Pugh M (1962) Amblyopia and the retina. Br J Ophthalmol 46:193–211

    Article  PubMed  CAS  Google Scholar 

  • Rouse MW, Tittle JS, Braunstein ML (1989) Stereoscopic depth perception by static stereo-deficient observers in dynamic displays with constant and changing disparity. Optom Vis Sci 66:355–362

    Article  PubMed  CAS  Google Scholar 

  • Schor CM (1977) Visual stimuli for strabismic suppression. Perception 6:583–588

    Article  PubMed  CAS  Google Scholar 

  • Secen J, Culham J, Ho C, Giaschi D (2011) Neural correlates of the multiple-object tracking deficit in amblyopia. Vis Res 51:2517–2527

    Article  PubMed  Google Scholar 

  • Sengpiel F, Jirmann KU, Vorobyov V, Eysel UT (2006) Strabismic suppression is mediated by inhibitory interactions in the primary visual cortex. Cereb Cortex 16:1750–1758

    Article  PubMed  Google Scholar 

  • Sharma V, Levi DM, Klein SA (2000) Undercounting features and missing features: evidence for a high-level deficit in strabismic amblyopia. Nat Neurosci 3:496–501

    Article  PubMed  CAS  Google Scholar 

  • Simmers AJ, Ledgeway T, Hess RF, McGraw PV (2003) Deficits to global motion processing in human amblyopia. Vis Res 43:729–738

    Article  PubMed  Google Scholar 

  • Simmers AJ, Ledgeway T, Hutchinson CV, Knox PJ (2011) Visual deficits in amblyopia constrain normal models of second-order motion processing. Vis Res 51:2008–2020

    Article  PubMed  CAS  Google Scholar 

  • Sireteanu R, Fronius M (1981) Naso-temporal asymmetries in human amblyopia: consequence of long-term interocular suppression. Vis Res 21:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Sireteanu R, Fronius M (1989) Different patterns of retinal correspondence in the central and peripheral visual field of strabismics. Invest Ophthalmol Vis Sci 30:2023–2033

    PubMed  CAS  Google Scholar 

  • Sireteanu R, Fronius M, Singer W (1981) Binocular interaction in the peripheral visual field of humans with strabismic and anisometropic amblyopia. Vis Res 21:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Stuart JA, Burian HM (1962) A study of separation difficulty. Am J Ophthalmol 53:471–477

    PubMed  CAS  Google Scholar 

  • Suttle CM, Melmoth DR, Finlay AL, Sloper JJ, Grant S (2011) Eye-hand coordination skills in children with and without amblyopia. Invest Ophthalmol Vis Sci 52:1851–1864

    Article  PubMed  Google Scholar 

  • Thompson B, Troje NF, Hansen BC, Hess RF (2008) Amblyopic perception of biological motion. J Vis 8:22, 21–14

    Article  PubMed  Google Scholar 

  • Tripathy SP, Cavanagh P (2002) The extent of crowding in peripheral vision does not scale with target size. Vis Res 42:2357–2369

    Article  PubMed  Google Scholar 

  • Tychsen L, Richards M, Wong A, Foeller P, Bradley D, Burkhalter A (2010) The neural mechanism for Latent (fusion maldevelopment) nystagmus. J neuroophthalmol 30:276–283

    Article  PubMed  Google Scholar 

  • Wang C, Waleszczyk WJ, Burke W, Dreher B (2007) Feedback signals from cat's area 21a enhance orientation selectivity of area 17 neurons. Exp Brain Res 182:479–490

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR (1991) Model of peripheral and amblyopic hyperacuity. Vis Res 31:967–982

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Huang PC, Hess RF (2013) Interocular suppression in amblyopia for global orientation processing. J Vis 13(5):19, 1–14

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daw, N.W. (2014). What Is Amblyopia?. In: Visual Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9059-3_8

Download citation

Publish with us

Policies and ethics