Skip to main content

Recording from Hair Cells

  • Chapter
  • First Online:
Perspectives on Auditory Research

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 50))

  • 2297 Accesses

Abstract

In the 1970s and 1980s, investigators began recording the electrical signals of individual hair cells in excised preparations. The earliest preparations were tuned in the sub-kilohertz range and the hair cells shared fundamental mechanisms of transduction, tuning, and transmission, leading to a view of the canonical hair cell. As inner ear preparations and experiments diversified, however, so did the known properties of hair cells. In particular, mammalian hair cells and synapses of both auditory and vestibular organs show remarkable specializations for response speed and precision. By controlling and recording voltage, the whole-cell patch clamp method allows manipulation of the many voltage-dependent processes that shape hair cell signals and an immediate read-out of signals in the currency of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Art, J. J., & Fettiplace, R. (1987). Variation of membrane properties in hair cells isolated from the turtle cochlea. Journal of Physiology, 385, 207–242.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Art, J. J., & Fettiplace, R. (2006). Contribution of ionic currents to tuning in auditory hair cells. In R. A. Eatock, R. R. Fay & A. N. Popper (Eds.), Vertebrate hair cells (pp. 204). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Ashmore, J., Avan, P., Brownell, W. E., Dallos, P., Dierkes, K., Fettiplace, R., Grosh, K., Hackney, C. M., Hudspeth, A. J., Julicher, F., Lindner, B., Martin, P., Meaud, J., Petit, C., Sacchi, J. R., & Canlon, B. (2010). The remarkable cochlear amplifier. Hearing Research, 266(1–2), 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Assad, J. A., Shepherd, G. M. G., & Corey, D. P. (1991). Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron, 7, 985–994.

    Article  PubMed  CAS  Google Scholar 

  • Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I., & Julius, D. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124(6), 1269–1282.

    Article  PubMed  CAS  Google Scholar 

  • Beurg, M., Fettiplace, R., Nam J. H., & Ricci, A. J. (2009). Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nature Neuroscience, 12(5), 553–558.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bonsacquet, J., Brugeaud, A., Compan, V., Desmadryl, G., & Chabbert, C. (2006). AMPA type glutamate receptor mediates neurotransmission at turtle vestibular calyx synapse. Journal of Physiology, 576(Part 1), 63–71.

    Google Scholar 

  • Brichta, A. M., Aubert, A., Eatock, R. A., & Goldberg, J. M. (2002). Regional analysis of whole cell currents from hair cells of the turtle posterior crista. Journal of Neurophysiology, 88, 3259–3278.

    Article  PubMed  Google Scholar 

  • Brownell, W. E. (2006). The piezoelectric outer hair cell. In R. A. Eatock, R. R. Fay, & A. N. Popper (Eds.), Vertebrate hair cells (pp. 313–347). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Corey, D. P., & Hudspeth, A. J. (1983). Kinetics of the receptor current in bullfrog saccular hair cells. Journal of Neuroscience, 3, 962–976.

    PubMed  CAS  Google Scholar 

  • Correia, M. J., & Lang, D. G. (1990). An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neuroscience Letters, 116, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, A. C., & Fettiplace, R. (1985). The mechanical properties of ciliary bundles of turtle cochlear hair cells. Journal of Physiology, 364, 359–379.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Crawford, A. C., Evans, M. G., & Fettiplace, R. (1989). Activation and adaptation of transducer currents in turtle hair cells. Journal of Physiology, 419, 405–434.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Denk, W., Holt, J. R., Shepherd, G. M. G., & Corey, D. P. (1995). Calcium imaging of single stereocilia in hair cells: Localization of transduction channels at both ends of tip links. Neuron, 15, 1311–1321.

    Article  PubMed  CAS  Google Scholar 

  • Eatock, R. A., & Hutzler, M. J. (1992). Ionic currents of mammalian vestibular hair cells. Annals of the New York Academy of Sciences, 656, 58–74.

    Article  PubMed  CAS  Google Scholar 

  • Eatock, R. A., & Hurley, K. M. (2003). Functional development of hair cells. In R. Romand & I. Varela-Nieto (Eds.), Development of the auditory and vestibular systems 3: Molecular development of the inner ear (pp. 389–448). San Diego: Academic Press.

    Google Scholar 

  • Eatock, R. A., & Lysakowski, A. (2006). Mammalian vestibular hair cells. In R. A. Eatock, R. R. Fay, & A. N. Popper (Eds.), Vertebrate hair cells (pp. 348–442). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Eatock, R. A., & Songer, J. E. (2011). Vestibular hair cells and afferents: Two channels for head motion signals. Annual Review of Neuroscience, 34, 501–534.

    Article  PubMed  CAS  Google Scholar 

  • Eatock, R. A., Corey, D. P., & Hudspeth, A. J. (1987). Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. Journal of Neuroscience, 7, 2821–2836.

    PubMed  CAS  Google Scholar 

  • El-Amraoui, A., & Petit, C. (2010). Cadherins as targets for genetic diseases. Cold Spring Harbor Perspectives in Biology, 2(1), a003095.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fettiplace, R., & Crawford, A. C. (1978). The coding of sound pressure and frequency in cochlear hair cells of the terrapin. Proceedings of the Royal Society of London B: Biological Sciences, 203, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace, R., & Fuchs, P. A. (1999). Mechanisms of hair cell tuning. Annual Review of Physiology, 61, 809–834.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, P. A., Nagai, T., & Evans, M. G. (1988). Electrical tuning in hair cells isolated from the chick cochlea. Journal of Neuroscience, 8(7), 2460–2467.

    PubMed  CAS  Google Scholar 

  • Fuchs, P. A., & Parsons, T. D. (2006). The synaptic physiology of hair cells. In R. A. Eatock, R. R. Fay & A. N. Popper (Eds.), Vertebrate hair cells (pp. 249–312). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Furukawa, T., & Matsuura, S. (1978). Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eighth nerve fibres in the goldfish. Journal of Physiology, 276, 193–209.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Géléoc, G. S., Lennan, G. W., Richardson, G. P., & Kros, C. J. (1997). A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proceedings of the Royal Society of London B: Biological Sciences, 264(1381), 611–621.

    Article  Google Scholar 

  • Gillespie, P. G., & Hudspeth, A. J. (1994). Pulling springs to tune transduction: Adaptation by hair cells. Neuron, 12(1), 1–9.

    Article  PubMed  Google Scholar 

  • Gillespie, P. G., Dumont, R. A., & Kachar, B. (2005). Have we found the tip link, transduction channel, and gating spring of the hair cell? Current Opinion in Neurobiology, 15(4), 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Glowatzki, E., & Fuchs, P. A. (2002). Transmitter release at the hair cell ribbon synapse. Nature Neuroscience, 5(2), 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Golding, N. L., & Oertel, D. (2012). Synaptic integration in dendrites: Exceptional need for speed. Journal of Physiology, 590, 5563–5569.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goodyear, R. J., Kros, C. J., & Richardson, G. P. (2006). The development of hair cells in the inner ear. In R. A. Eatock, R. R. Fay & A. N. Popper (Eds.), Vertebrate hair cells (pp. 20–94). New York: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Harris, G. G., Frishkopf, L. S., & Flock, A. (1970). Receptor potentials from hair cells of the lateral line. Science, 167(3914), 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Holt, J. C., Chatlani, S., Lysakowski, A., & Goldberg, J. M. (2007). Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista. Journal of Neurophysiology, 98(3), 1083–1101.

    Article  PubMed Central  PubMed  Google Scholar 

  • Housley, G. D., & Ashmore, J. F. (1992). Ionic currents of outer hair cells isolated from the guinea-pig cochlea. Journal of Physiology, 448, 73–98.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Howard, J., & Hudspeth, A. J. (1987). Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proceedings of the National Academy of Science of the U.S.A., 84, 3064–3068.

    Google Scholar 

  • Howard, J., & Hudspeth, A. J. (1988). Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron, 1, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth, A. J., & Corey, D. P. (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proceedings of the National Academy of Sciences of the U.S.A., 74, 2407–2411.

    Google Scholar 

  • Hudspeth, A. J., & Lewis, R. S. (1988a). Kinetic analysis of voltage- and ion-dependent conductances in saccular hair cells of the bull-frog, Rana catesbeiana Journal of Physiology, 400, 237–274.

    CAS  Google Scholar 

  • Hudspeth, A. J., & Lewis, R. S. (1988b). A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana. Journal of Physiology, 400, 275–297.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hudspeth, A. J., Choe, Y., Mehta, A. D., & Martin, P. (2000). Putting ion channels to work: Mechanoelectrical transduction, adaptation and amplification by hair cells. Proceedings of the National Academy of Sciences of the U.S.A., 97, 11765–11772.

    Google Scholar 

  • Hurley, K. M., Gaboyard, S., Zhong, M., Price, S. D., Wooltorton, J. R., Lysakowski, A., & Eatock, R. A. (2006). M-like K+ currents in type I hair cells and calyx afferent endings of the developing rat utricle. Journal of Neuroscience, 26(40), 10253–10269.

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki, S., Chihara, Y., Komuta, Y., Ito, K., & Sahara, Y. (2008). Low-voltage-activated potassium channels underlie the regulation of intrinsic firing properties of rat vestibular ganglion cells. Journal of Neurophysiology, 100(4), 2192–2204.

    Article  PubMed  CAS  Google Scholar 

  • Jia, S., Dallos, P., & He, D. Z. (2007). Mechanoelectric transduction of adult inner hair cells. Journal of Neuroscience, 27(5), 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. L., Beurg, M., Marcotti, W., & Fettiplace, R. (2011). Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron, 70(6), 1143–1154.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kachar, B., Parakkal, M., Kurc, M., Zhao, Y., & Gillespie, P. G. (2000). High-resolution structure of hair-cell tip links. Proceedings of the National .Academy of Science of the U.S.A., 97(24), 13336–13341.

    Google Scholar 

  • Kalluri, R., Xue, J., & Eatock, R. A. (2010). Ion channels set spike timing regularity of mammalian vestibular afferent neurons. Journal of Neurophysiology, 105(4), 2034–2051.

    Article  Google Scholar 

  • Kawashima, Y., Geleoc, G. S., Kurima, K., Labay, V., Lelli, A., Asai, Y., Makishima, T., Wu, D. K., Della Santina, C. C., Holt, J. R., & Griffith, A. J. (2011). Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. Journal of Clinical Investigation, 121(12), 4796–4809.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kazmierczak, P., Sakaguchi, H., Tokita, J., Wilson-Kubalek, E. M., Milligan, R. A., Muller, U., & Kachar, B. (2007). Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature, 449(7158), 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Kharkovets, T., Hardelin, J. P., Safieddine, S., Schweizer, M., El-Amraoui, A., Petit, C., & Jentsch, T. J. (2000). KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proceedings of the National Academy of Sciences of the USA, 97(8), 4333–4338.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kindt, K. S., Finch, G., & Nicolson, T. (2012). Kinocilia mediate mechanosensitivity in developing zebrafish hair cells. Developmental Cell, 23(2), 329–341.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kros, C. J., Rüsch, A., & Richardson, G. P. (1992). Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proceedings of the Royal Society of London B: Biological Sciences, 249, 185–193.

    Article  CAS  Google Scholar 

  • Kros, C. J., Marcotti, W., van Netten, S. M., Self, T. J., Libby, R. T., Brown, S. D., Richardson, G. P., & Steel, K. P. (2002). Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nature Neuroscience, 5(1), 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Kurima, K., Peters, L. M., Yang, Y., Riazuddin, S., Ahmed, Z. M., Naz, S., Arnaud, D., Drury, S., Mo, J., Makishima, T., Ghosh, M., Menon, P. S., Deshmukh, D., Oddoux, C., Ostrer, H., Khan, S., Deininger, P. L., Hampton, L. L., Sullivan, S. L., Battey, J. F., Jr., Keats, B. J., Wilcox, E. R., Friedman, T. B., & Griffith, A. J. (2002). Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nature Genetics, 30(3), 277–284.

    Article  PubMed  Google Scholar 

  • Kwan, K. Y., Allchorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang, D. S., Woolf, C. J., & Corey, D. P. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron, 50(2), 277–289.

    Article  PubMed  CAS  Google Scholar 

  • Lenzi, D., Runyeon, J. W., Crum, J., Ellisman, M. H., & Roberts, W. M. (1999). Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. Journal of Neuroscience, 19(1), 119–132.

    PubMed  CAS  Google Scholar 

  • Lewis, R. S., & Hudspeth, A. J. (1983). Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature, 304, 538–541.

    Article  PubMed  CAS  Google Scholar 

  • Lysakowski, A., Gaboyard-Niay, S., Calin-Jageman, I., Chatlani, S., Price, S. D., & Eatock, R. A. (2011). Molecular microdomains in a sensory terminal, the vestibular calyx ending. Journal of Neuroscience, 31(27), 10101–10114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marcotti, W., Johnson, S. L., Rusch, A., & Kros, C. J. (2003). Sodium and calcium currents shape action potentials in immature mouse inner hair cells. Journal of Physiology, 552(Part 3), 743–761.

    Google Scholar 

  • Marcotti, W., Erven, A., Johnson, S. L., Steel, K. P., & Kros, C. J. (2006). Tmc1 is necessary for normal functional maturation and survival of inner and outer hair cells in the mouse cochlea. Journal of Physiology, 574(Part 3), 677–698.

    Google Scholar 

  • Martin, P., Bozovic, D., Choe, Y., & Hudspeth, A. J. (2003). Spontaneous oscillation by hair bundles of the bullfrog’s sacculus. Journal of Neuroscience, 23(11), 4533–4548.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meredith, F. L., Benke, T. A., & Rennie, K. J. (2012). Hyperpolarization-activated current (I (h)) in vestibular calyx terminals: Characterization and role in shaping postsynaptic events. Journal of the Association for Research in Otolaryngology, 13, 745–758.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mo, Z. L., Adamson, C. L., & Davis, R. L. (2002). Dendrotoxin-sensitive K+ currents contribute to accommodation in murine spiral ganglion neurons. Journal of Physiology, 542,763–768.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moser, T., & Beutner, D. (2000). Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proceedings of the National Academy of Sciences of the USA, 97(2), 883–888.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moser, T., Brandt, A., & Lysakowski, A. (2006). Hair cell ribbon synapses. Cell and Tissue Research, 326(2), 347–359.

    Article  PubMed  Google Scholar 

  • Mulroy, M. J., Altmann, D. W., Weiss, T. F., & Peake, W. T. (1974). Intracellular electric responses to sound in a vertebrate cochlea. Nature, 249, 482–485.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson, T., Rüsch, A., Friedrich, R. W., Granato, M., Ruppersberg, J. P., & Nusslein-Volhard, C. (1998). Genetic analysis of vertebrate sensory hair cell mechanosensation: The zebrafish circler mutants. Neuron, 20(2), 271–283.

    Article  PubMed  CAS  Google Scholar 

  • Ohmori, H. (1984). Studies of ionic currents in the isolated vestibular hair cell of the chick. Journal of Physiology, 350, 561–581.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Parsons, T. D., Lenzi, D., Almers, W., & Roberts, W. M. (1994). Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: Capacitance measurements in saccular hair cells. Neuron, 13, 875–883.

    Article  PubMed  CAS  Google Scholar 

  • Pickles, J. O., Comis, S. D., & Osborne, M. P. (1984). Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hearing Research, 15, 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Rennie, K. J., & Streeter, M. A. (2006). Voltage-dependent currents in isolated vestibular afferent calyx terminals. Journal of Neurophysiology, 95(1), 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Ricci, A. J., Wu, Y. C., & Fettiplace, R. (1998). The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. Journal of Neuroscience, 18, 8261–8277.

    PubMed  CAS  Google Scholar 

  • Ricci, A. J., Kennedy, H. J., Crawford, A. C., & Fettiplace, R. (2005). The transduction channel filter in auditory hair cells. Journal of Neuroscience, 25(34), 7831–7839.

    Article  PubMed  CAS  Google Scholar 

  • Ricci, A. J., Bai, J. P., Song, L., Lv, C., Zenisek, D., & Santos-Sacchi, J. (2013). Patch-clamp recordings from lateral line neuromast hair cells of the living zebrafish. Journal of Neuroscience, 33(7), 3131–3134.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rüsch, A., & Eatock, R. A. (1996). A delayed rectifier conductance in type I hair cells of the mouse utricle. Journal of Neurophysiology, 76(2), 995–1004.

    PubMed  Google Scholar 

  • Rüsch, A., Lysakowski, A., & Eatock, R. A. (1998a). Postnatal development of type I and type II hair cells in the mouse utricle: Acquisition of voltage-gated conductances and differentiated morphology. Journal of Neuroscience, 18(18), 7487–7501.

    PubMed  Google Scholar 

  • Rüsch, A., Erway, L. C., Oliver, D., Vennstrom, B., & Forrest, D. (1998b). Thyroid hormone receptor beta-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proceedings of the National Academy of Sciences of the U.S.A., 95(26), 15758–15762.

    Google Scholar 

  • Russell, I. J., & Sellick, P. M. (1977). Tuning properties of hair cells in the mammalian cochlea. Nature, 267, 858–860.

    Article  PubMed  CAS  Google Scholar 

  • Sans, A., & Scarfone, E. (1996). Afferent calyces and type I hair cells during development: A new morphofunctional hypothesis. Annals of the New York Academy of Sciences, 781, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Schnee, M. E., Lawton, D. M., Furness, D. N., Benke, T. A., & Ricci, A. J. (2005). Auditory hair cell-afferent fiber synapses are specialized to operate at their best frequencies. Neuron, 47(2), 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Sewell, W. F. (1996). Neurotransmitters and synaptic transmission. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.), The cochlea (pp. 503–533). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Siemens, J., Lillo, C., Dumont, R. A., Reynolds, A., Williams, D. S., Gillespie, P. G., & Muller, U. (2004). Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature, 428(6986), 950–955.

    Article  PubMed  CAS  Google Scholar 

  • Sollner, C., Rauch, G. J., Siemens, J., Geisler, R., Schuster, S. C., Muller, U., & Nicolson, T. (2004). Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature, 428(6986), 955–959.

    Article  PubMed  CAS  Google Scholar 

  • Songer, J. E., & Eatock, R. A. (2013). Tuning and timing in mammalian type I hair cells and calyceal synapses. Journal of Neuroscience, 33(8), 3706–3724.

    Article  PubMed  CAS  Google Scholar 

  • Sotomayor, M., Corey, D. P., & Schulten, K. (2005). In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure., 13(4), 669–682.

    Article  PubMed  CAS  Google Scholar 

  • Vollrath, M. A., & Eatock, R. A. (2003). Time course and extent of mechanotransducer adaptation in mouse utricular hair cells: comparison with frog saccular hair cells. Journal of Neurophysiology, 90(4), 2676–2689.

    Article  PubMed  Google Scholar 

  • Vollrath, M. A., Kwan, K. Y., & Corey, D. P. (2007). The micromachinery of mechanotransduction in hair cells. Annual Review of Neuroscience, 30, 339–365.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vreugde, S., Erven, A., Kros, C. J., Marcotti, W., Fuchs, H., Kurima, K., Wilcox, E. R., Friedman, T. B., Griffith, A. J., Balling, R., Hrabe, D. A., Avraham, K. B., & Steel, K. P. (2002). Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nature Genetics, 30(3), 257–258.

    Article  PubMed  Google Scholar 

  • Wersäll, J. (1956). Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig; a light and electron microscopic investigation. Acta Oto-Laryngologica, Supplementum, 126, 1–85.

    Google Scholar 

  • Whitfield, T. T., Granato, M., van Eeden, F. J., Schach, U., Brand, M., Furutani-Seiki, M., Haffter, P., Hammerschmidt, M., Heisenberg, C. P., Jiang, Y. J., Kane, D. A., Kelsh, R. N., Mullins, M. C., Odenthal, J., & Nusslein-Volhard, C. (1996). Mutations affecting development of the zebrafish inner ear and lateral line. Development, 123, 241–254.

    PubMed  CAS  Google Scholar 

  • Wittig, J. H., Jr., & Parsons, T. D. (2008). Synaptic ribbon enables temporal precision of hair cell afferent synapse by increasing the number of readily releasable vesicles: A modeling study. Journal of Neurophysiology, 100(4), 1724–1739.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu, Y. C., Ricci, A. J., & Fettiplace, R. (1999). Two components of transducer adaptation in auditory hair cells. Journal of Neurophysiology, 82(5), 2171–2181.

    PubMed  CAS  Google Scholar 

  • Yamashita, M., & Ohmori, H. (1990). Synaptic responses to mechanical stimulation in calyceal and bouton type vestibular afferents studied in an isolated preparation of semicircular canal ampullae of chicken. Experimental Brain Research, 80, 475–488.

    Article  PubMed  CAS  Google Scholar 

  • Zdebik, A. A., Wangemann, P., & Jentsch, T. J. (2009). Potassium ion movement in the inner ear: Insights from genetic disease and mouse models. Physiology, 24, 307–316.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in my laboratory has been supported principally by the U.S. National Institutes of Deafness and Communication Disorders, but our first work on vestibular hair cells was stimulated by the Office of Naval Research; a scientific officer who’d heard Jim Hudspeth speak persuaded the admirals that they ought to fund hair cell research. The ONR also introduced me to Art Popper and Dick Fay, who originated and shepherded, at enormous effort, the Springer Handbook of Auditory Research. Their commitment to the encouragement and dissemination of research on sensory systems of the inner ear has benefitted me and my colleagues in countless ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Anne Eatock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eatock, R.A. (2014). Recording from Hair Cells. In: Popper, A., Fay, R. (eds) Perspectives on Auditory Research. Springer Handbook of Auditory Research, vol 50. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9102-6_5

Download citation

Publish with us

Policies and ethics