Skip to main content

Proteases as Virulence Factors in Leishmania: Focus on Serine Proteases as Possible Therapeutic Targets

  • Chapter
  • First Online:
Proteases in Health and Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 7))

  • 1100 Accesses

Abstract

Leishmaniasis is one of the most assorted and intricate of all vector borne diseases caused by the genus Leishmania. Survival of Leishmania parasites inside the mammalian host needs a set of virulence factors, among them, Leishmania proteases have paramount importance. Several of these proteases have been identified as potential virulence factors for their crucial roles in the invasion of the host via parasite migration through tissue barriers, degradation of host proteins for nutrition purpose, immune evasion and activation of inflammation. Hence, the investigation on proteases in Leishmania is proposed as a valuable approach to enhance our knowledge on host-parasite interaction. Through various studies, a number of metalloproteases and cysteine proteases have been implicated as major components in host invasion by modulating host cell signaling for the establishment and continuation of infection by Leishmania. But, the roles of serine proteases in leishmaniasis have not been investigated adequately. In this review, we will discuss the significance of Leishmania proteases in parasite lifecycle and their possible accountability as a new drug target with special emphasis on Leishmania serine proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvar J, Velez ID, Bern C et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671–e356712

    PubMed  CAS  Google Scholar 

  2. Okwor I, Uzonna JE (2013) The immunology of Leishmania/HIV co-infection. Immunol Res 56:163–171. doi:10.1007/s12026-013-8389-8

    PubMed  CAS  Google Scholar 

  3. Bogdan C, Rollinghoff M (1999) How do protozoan parasites survive inside macrophages? Parasitol Today 15:22–28

    PubMed  CAS  Google Scholar 

  4. Denkers EY, Butcher BA (2005) Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends Parasitol 21:35–41

    PubMed  CAS  Google Scholar 

  5. Stager S, Joshi T, Bankoti R (2010) Immune evasive mechanisms contributing to persistent Leishmania donovani infection. Immunol Res 47:14–24

    PubMed  Google Scholar 

  6. Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3:1041–1047

    PubMed  CAS  Google Scholar 

  7. Cunningham AC (2002) Parasitic adaptive mechanisms in infection by Leishmania. Exp Mol Pathol 72:132–141

    PubMed  CAS  Google Scholar 

  8. Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9:604–615

    PubMed  CAS  Google Scholar 

  9. Favali C, Tavares N, Clarencio J et al (2007) Leishmania amazonensis infection impairs differentiation and function of human dendritic cells. J Leukoc Biol 82:1401–1406

    PubMed  CAS  Google Scholar 

  10. Sharma U, Singh S (2012) Immunobiology of leishmaniasis. Indian J Exp Biol 47:412–423

    Google Scholar 

  11. Proudfoot L, Nikolaev AV, Feng GJ et al (1996) Regulation of the expression of nitric oxide synthase and leishmanicidal activity by glycoconjugates of Leishmania lipophosphoglycan in murine macrophages. Proc Natl Acad Sci 93:10984–10989

    PubMed  CAS  Google Scholar 

  12. Moradin N, Descoteaux A (2012) Leishmania promastigotes: building a safe niche within macrophages. Front Cell Infect Microbiol 2:1–7

    Google Scholar 

  13. Goto H, Prianti MG (2009) Immunoactivation and immunopathogeny during active visceral leishmaniasis. Rev Inst Med Trop Sao Paulo 51:241–246

    PubMed  Google Scholar 

  14. Olivier M, Gregory DJ, Forget G (2005) Subversion mechanisms by which Leishmania parasites escape the host immune response: a signaling point of view. Clin Microbiol Rev 18:293–305

    PubMed  CAS  Google Scholar 

  15. Shio MT, Hassani K, Isnard A et al (2012) Host cell signalling and Leishmania mechanisms of evasion. J Trop Med 2012:1–14

    Google Scholar 

  16. Shadab M, Ali N (2011) Evasion of host defence by Leishmania donovani: subversion of signaling pathways. Mol Biol Int 2011:1–14

    Google Scholar 

  17. Bhardwaj S, Srivastava N, Sudan R et al (2010) Leishmania interferes with host cell signaling to devise a survival strategy. J Biomed Biotechnol 2010:1–13

    Google Scholar 

  18. Shio MT, Olivier M (2010) Leishmania survival mechanisms: the role of host phosphatases. J Leuko Biol 88:1–3

    PubMed  CAS  Google Scholar 

  19. Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur J Immunol 29:3737–3744

    PubMed  CAS  Google Scholar 

  20. Ghosh S, Bhattacharyya S, Sirkar M et al (2002) Leishmania donovani suppresses activated protein 1 and NF-κB activation in host macrophages via ceramide generation: involvement of extracellular signal-regulated kinase. Infect Immun 70:6828–6838

    PubMed  CAS  Google Scholar 

  21. Matlashewski G (2001) Leishmania infection and virulence. Med Microbiol Immunol 190:37–42

    PubMed  CAS  Google Scholar 

  22. Olivier M, Atayde VD, Isnard A et al (2012) Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect 14:1–13

    Google Scholar 

  23. Franco LH, Beverley SM, Dario S et al (2011) Innate immune activation and subversion of mammalian functions by Leishmania lipophosphoglycan. J Parasitol Res 2012:1–11

    Google Scholar 

  24. Lacerda DI, Cysne-Finkelstein L, Nunes MP et al (2012) Kinetoplastid membrane protein-11 exacerbates infection with Leishmania amazonensis in murine macrophages. Mem Inst Oswaldo Cruz 107:238–245

    PubMed  CAS  Google Scholar 

  25. Vermelho AB, Branquinha MH, D’Ávila-Levy CM et al (2010) Biological roles of peptidases in Trypanosomatids. Open Parasitol J 4:5–23

    CAS  Google Scholar 

  26. Zucca M, Savoia D (2011) Current developments in the therapy of protozoan infections. Open Med Chem J 5:4–10

    PubMed  CAS  Google Scholar 

  27. Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asin Pac J Trop Med 5:485–497

    CAS  Google Scholar 

  28. Armstrong PB (2006) Proteases and protease inhibitors: a balance of activities in host–pathogen interaction. Immunobiology 211:263–281

    PubMed  CAS  Google Scholar 

  29. Rosenthal PJ (1999) Proteases of protozoan parasites. Adv Parasitol 43:106–159

    Google Scholar 

  30. Carruthers VB, Blackman MJ (2005) A new release on life: emerging concepts in proteolysis and parasite invasion. Mol Microbiol 55:1617–1630

    PubMed  CAS  Google Scholar 

  31. Klemba M, Goldberg DE (2002) Biological roles of protease in parasitic protozoa. Annu Rev Biochem 71:275–305

    PubMed  CAS  Google Scholar 

  32. McKerrow JH, Caffrey C, Kelly B et al (2006) Proteases in parasitic diseases. Annu Rev Pathol 1:497–536

    PubMed  CAS  Google Scholar 

  33. Piña-Vázquez C, Reyes-López M, Ortíz-Estrada G et al (2012) Host-parasite interaction: parasite-derived and -induced proteases that degrade human extracellular matrix. J Parasitol Res 2012:1–24

    Google Scholar 

  34. Besteiro S, Williams RAM, Coombs GH et al (2007) Protein turnover and differentiation in Leishmania. Int J Parasitol 37:1063–1075

    PubMed  CAS  Google Scholar 

  35. Sajid M, McKerrow JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120:1–21

    PubMed  CAS  Google Scholar 

  36. Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381

    PubMed  CAS  Google Scholar 

  37. Yao C (2010) Major surface protease of trypanosomatids: one size fits all? Infect Immun 78:22–31

    PubMed  CAS  Google Scholar 

  38. Isnard A, Hassani K, Shio MT (2012) Impact of Leishmania metalloproteases GP63 on macrophage signaling. Front Cell Infect Microbiol 2:1–9

    Google Scholar 

  39. Chang KP, McGwire BS (2002) Molecular determinants and regulation of Leishmania virulence. Kinetoplastid Biol Dis 1:1–7

    PubMed  Google Scholar 

  40. Olivier M, Hassani K (2010) Protease inhibitors as prophylaxis against leishmaniasis: new hope from the major surface protease gp63. Future Med Chem 2:539–542

    PubMed  CAS  Google Scholar 

  41. Burleigh BA, Andrews NW (1995) A 120 kDa alkaline peptidase from T. cruzi is involved in the generation of a novel Ca2+-signalling factor for mammalian cells. J Biol Chem 270:5172–5180

    PubMed  CAS  Google Scholar 

  42. Burleigh BA, Caler EV, Webster P et al (1997) A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. J Cell Biol 136:609–620

    PubMed  CAS  Google Scholar 

  43. Alvarez VE, Niemirowicz GT, Cazzulo JJ (2012) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim Biophys Acta 1824:195–206

    PubMed  CAS  Google Scholar 

  44. Cai H, Kuang R, Gu J, Wang Y (2011) Proteases in malaria parasites - a phylogenomic perspective. Curr Genomics 12:417–427

    PubMed  CAS  Google Scholar 

  45. Schneider P, Rosat JP, Bouvier J, Louis J, Bordier C (1992) Leishmania major-differential regulation of the surface metalloprotease in amastigote and promastigote stages. Exp Parasitol 75:196–206

    PubMed  CAS  Google Scholar 

  46. Voth BR, Kelly BL, Joshi PB et al (1998) Differentially expressed Leishmania major gp63 genes encode cell surface leishmanolysin with distinct signals for glycosylphosphatidylinositol attachment. Mol Biochem Parasitol 93:31–41

    PubMed  CAS  Google Scholar 

  47. McMaster WR, Morrison CJ, MacDonald MH, Joshi PB (1994) Mutational and functional analysis of the Leishmania surface metalloproteinase GP63: similarities to matrix metalloproteinases. Parasitology 108(Suppl):S29–S36

    PubMed  Google Scholar 

  48. Bahr V, Stierhof YD, Ilg T et al (1993) Expression of lipophosphoglycan, high- molecular weight phosphoglycan and glycoprotein 63 in promastigotes and amastigotes of Leishmania mexicana. Mol Biochem Parasitol 58:107–121

    PubMed  CAS  Google Scholar 

  49. Ilg T, Harbecke D, Wiese M et al (1993) Monoclonal antibodies directed against Leishmania secreted acid phosphatase and lipophosphoglycan. Partial characterization of private and public epitopes. Eur J Biochem 217:603–615

    PubMed  CAS  Google Scholar 

  50. Roberts SC, Swihart KG, Agey MW et al (1993) Sequence diversity and organization of the msp gene family encoding gp63 of Leishmania chagasi. Mol Biochem Parasitol 62:157–171

    PubMed  CAS  Google Scholar 

  51. Ramamoorthy R, Donelson JE, Paetz KE et al (1992) Three distinct RNAs for the surface protease gp63 are differentially expressed during development of Leishmania donovani chagasi promastigotes to an infectious form. J Biol Chem 267:1888–1895

    PubMed  CAS  Google Scholar 

  52. Ma L, Meng Q, Cheng W et al (2011) Involvement of the GP63 protease in infection of Trichomonas vaginalis. Parasitol Res 109:71–79

    PubMed  Google Scholar 

  53. Yao C, Donelson JE, Wilson ME et al (2003) The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 132:1–16

    PubMed  CAS  Google Scholar 

  54. McGwire BS, Chang KP, Engman DM (2003) Migration through the by the parasitic protozoan Leishmania is enhanced by surface metalloprotease gp63. Infect Immun 71:1008–1010

    PubMed  CAS  Google Scholar 

  55. Theander TG, Hviid L et al (1994) The major surface glycoprotein [gp63] from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells. J Immunol 152:4542–4548

    PubMed  Google Scholar 

  56. Garcia MR, Graham S, Harris RA et al (1997) Epitope cleavage by Leishmania endopeptidases [s] limits the efficiency of the exogenous pathway of major histocompatibility complex class I-associated antigen presentation. Eur J Immunol 27:1005–1013

    PubMed  CAS  Google Scholar 

  57. Kulkarni MM, McMaster WR, Kamysz E et al (2006) The major surface-metalloprotease of the parasitic protozoan, Leishmania, protects against antimicrobial peptide-induced apoptotic killing. Mol Microbiol 62:1484–1497

    PubMed  CAS  Google Scholar 

  58. Corradin S, Ransijn A, Corradin G et al (1999) MARCKS-related protein [MRP] is a substrate for the Leishmania major surface protease leishmanolysin [gp63]. J Biol Chem 274:25411–25418

    PubMed  CAS  Google Scholar 

  59. Gomez MA, Contreras I, Hallé M et al (2009) Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal 2:ra58

    PubMed  Google Scholar 

  60. Contreras I, Gómez MA, Nguyen O (2010) Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloprotease GP63. PLoS Pathog 6:e1001148

    PubMed  Google Scholar 

  61. Gregory DJ, Godbout M, Contreras I et al (2008) A novel form of NF-kappa B is induced by Leishmania infection: involvement in macrophage gene expression. Eur J Immunol 38:1071–1081

    PubMed  CAS  Google Scholar 

  62. Cameron P, McGachy A, Anderson M et al (2004) Inhibition of lipopolysaccharide induced macrophage IL-12 production by Leishmania mexicana amastigotes: the role of cysteine peptidases and the NF-kappaB signaling pathway. J Immunol 173:3297–3304

    PubMed  CAS  Google Scholar 

  63. LiekeT NS, Eidsmo L et al (2008) Leishmania surface protein GP63 binds directly to human natural killer cells and inhibits proliferation. Clin Exp Immunol 153:221–230

    Google Scholar 

  64. Jaramillo M, Gomez MA, Larsson O et al (2011) Leishmania repression of host translation through mTOR cleavage is required for parasite survival small antimicrobial peptides with leishmanicidal activity. J Biol Chem 280:984–990

    Google Scholar 

  65. Choudhury R, Das P, De T et al (2010) Immunolocalization and characterization of two novel proteases in Leishmania donovani: putative roles in host invasion and parasite development. Biochimie 92:1274–1286

    PubMed  CAS  Google Scholar 

  66. Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    PubMed  Google Scholar 

  67. Caffrey CR, Steverding D (2009) Kinetiplastid papain-like cysteine peptidases. Mol Biochem Parasitol 167:12–19

    PubMed  CAS  Google Scholar 

  68. Williams RA, Tetley L, Mottram JC et al (2006) Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 61:655–674

    PubMed  CAS  Google Scholar 

  69. Mahmoudzadeh-Niknam H, McKerrow JH (2004) Leishmania tropica: cysteine proteases are essential for growth and pathogenicity. Exp Parasitol 106:158–163

    PubMed  CAS  Google Scholar 

  70. Selzer PM, Pingel S, Hsieh I et al (1999) Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc Natl Acad Sci U S A 96:11015–11022

    PubMed  CAS  Google Scholar 

  71. McKerrow JH, Rosenthal PJ, Swenerton R et al (2008) Development of protease. Inhibitors for protozoan infections. Curr Opin Infect Dis 21:668–672

    PubMed  CAS  Google Scholar 

  72. Alexander J, Coombs GH, Mottram JC (1998) Leishmania Mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol 161:6794–6801

    PubMed  CAS  Google Scholar 

  73. Buxbaum LU, Denise H, Coombs GH et al (2003) Cysteine protease B of Leishmania mexicana inhibits host Th1 responses and protective immunity. J Immunol 171:3711–3717

    PubMed  CAS  Google Scholar 

  74. Denise H, McNeil K, Brooks DR et al (2003) Expression of multiple CPB genes encoding cysteine proteases is required for Leishmania mexicana virulence in vivo. Infect Immun 71:3190–3195

    PubMed  CAS  Google Scholar 

  75. Somanna A, Mundodi V, Gedamu L (2002) Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor beta. J Biol Chem 277:25305–25312

    PubMed  CAS  Google Scholar 

  76. Mottram JC, Brooks DR, Coombs GH (1998) Roles of cysteine proteinases of trypanosomes and Leishmania in host-parasite interactions. Curr Opin Microbiol 1:455–460

    PubMed  CAS  Google Scholar 

  77. Denise H, Poot J, Jiménez M et al (2006) Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5. BMC Mol Biol 13:42

    Google Scholar 

  78. Duboise SM, Vannier-Santos MA, Costa-Pinto D et al (1994) The biosynthesis, processing, and immunolocalization of Leishmania pifanoi amastigote cysteine proteinases. Mol Biochem Parasitol 68:119–132

    PubMed  CAS  Google Scholar 

  79. Pollock KG, McNeil KS, Mottram JC et al (2003) The Leishmania mexicana cysteine protease, CPB2.8, induces potent Th2 responses. J Immunol 170:1746–1753

    PubMed  CAS  Google Scholar 

  80. Mottram JC, Souza AE, Hutchison JE et al (1996) Evidence from disruption of the lmcpb gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci U S A 93:6008–6013

    PubMed  CAS  Google Scholar 

  81. Alves CR, Pontes de Carvalho LC, Souza ALA et al (2001) A strategy for the differentiation of T-cell epitopes on Leishmania cysteine proteinases. Cytobios 104:33–41

    PubMed  CAS  Google Scholar 

  82. Alves CR, Benévolo-De-Andrade TC, Alves JL et al (2004) Th1 and Th2 immunological profile induced by cysteine proteinase in murine leishmaniasis. Parasite Immunol 26: 127–135

    PubMed  CAS  Google Scholar 

  83. Saffari B, Mohabatkar H (2009) Computational analysis of cysteine proteases (Clan CA, Family Cl) of Leishmania major to find potential epitopic regions. Genom Proteom Bioinformatic 7:87–95

    CAS  Google Scholar 

  84. Nagill R, Kaur S (2011) Vaccine candidates for leishmaniasis: a review. Int Immunopharmacol 11:1464–1488

    PubMed  CAS  Google Scholar 

  85. Doroud D, Zahedifard F, Vatanara A et al (2011) Cysteine proteinase type I, encapsulated in solid lipid nanoparticles induces substantial protection against Leishmania major infection in C57BL/6 mice. Parasite Immunol 33:335–348

    PubMed  CAS  Google Scholar 

  86. Fedeli CE, Ferreira JH, Mussalem JS et al (2010) Partial protective responses induced by a recombinant cysteine proteinase from Leishmania (Leishmania) amazonensis in a murine model of cutaneous leishmaniasis. Exp Parasitol 124:153–158

    PubMed  CAS  Google Scholar 

  87. Khoshgoo N, Zahedifard F, Azizi H et al (2008) Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals. Vaccine 26:5822–5829

    PubMed  CAS  Google Scholar 

  88. Bryson K, Besteiro S, McGachy HA et al (2009) Overexpression of the natural inhibitor of cysteine peptidases in Leishmania mexicana leads to reduced virulence and a Th1 response. Infect Immun 77:2971–2978

    PubMed  CAS  Google Scholar 

  89. Bates PA, Robertson CD, Coombs GH (1994) Expression of cysteine proteinases by metacyclic promastigotes of Leishmania mexicana. J Eukaryot Microbiol 41:199–203

    PubMed  CAS  Google Scholar 

  90. Frame MJ, Mottram JC, Coombs GH (2000) Analysis of the roles of cysteine proteinases of Leishmania mexicana in the host-parasite interaction. Parasitology 121:367–377

    PubMed  CAS  Google Scholar 

  91. Bart G, Frame MJ, Carter R et al (1997) Cathepsin B-like cysteine proteinase-deficient mutants of Leishmania mexicana. Mol Biochem Parasitol 88:53–61

    PubMed  CAS  Google Scholar 

  92. Das L, Datta N, Bandyopadhyay S et al (2001) Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response. J Immunol 166:4020–4028

    PubMed  CAS  Google Scholar 

  93. Mukherjee S, Ukil A, Das PK (2007) Immunomodulatory peptide from cystatin, a natural cysteine protease inhibitor, against leishmaniasis as a model macrophage disease. Antimicrob Agents Chemother 51:1700–1707

    PubMed  CAS  Google Scholar 

  94. Mundodi V, Kucknoor AS, Gedamu L (2005) Role of Leishmania [Leishmania] chagasi amastigote cysteine protease in intracellular parasite survival: studies by gene disruption and antisense mRNA inhibition. BMC Mol Biol 6:3

    PubMed  Google Scholar 

  95. De Souza LS, Lang T, Prina E et al (1995) Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells. J Cell Sci 108:3219–3231

    Google Scholar 

  96. Abu-Dayyeh I, Hassani K, Westra ER et al (2010) Comparative study of the ability of Leishmania mexicana promastigotes and amastigotes to alter macrophage signaling and functions. Infect Immun 78:2438–2445

    PubMed  CAS  Google Scholar 

  97. Mottram JC, Souza AE, Hutchison JE et al (1996) Evidence from disruption of the lmCPB gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci 93:6008–6013

    PubMed  CAS  Google Scholar 

  98. Di Cera E (2009) Serine proteases. IUBMB Life 61:510–515

    PubMed  Google Scholar 

  99. Davies BJ, Pickard BS, Steel M et al (1998) Serine proteases in rodent hippocampus. J Biol Chem 273:23004–23011

    PubMed  CAS  Google Scholar 

  100. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102:4501–4524

    PubMed  CAS  Google Scholar 

  101. Blow DM, Birktoft JJ, Hartley BS (1969) Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221:337–340

    PubMed  CAS  Google Scholar 

  102. Almonte AG, Sweatt JD (2011) Serine proteases, serine protease inhibitors, and protease activated receptors: roles in synaptic function and behavior. Brain Res 1407:107–122

    PubMed  CAS  Google Scholar 

  103. Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular diseases. Circulation 114:1070–1077

    PubMed  CAS  Google Scholar 

  104. Macfarlane SR, Seatter MJ, Kanke T et al (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

  105. Wang Y, Luo W, Reiser G (2008) Trypsin and trypsin-like proteases in the brain: proteolysis and cellular functions. Cell Mol Life Sci 65:237–252

    PubMed  CAS  Google Scholar 

  106. Barrett AJ, Rawlings ND (1992) Oligopeptidases, and the emergence of prolyl oligopeptidase family. Biol Chem Hoppe Seyler 373:353–360

    PubMed  CAS  Google Scholar 

  107. Caler EV, de Avalos SV, Haynes PA et al (1998) Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J 17:4975–4986

    PubMed  CAS  Google Scholar 

  108. Bastos IM, Grellier P, Martins NF et al (2005) Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells. Biochem J 388:29–38

    PubMed  CAS  Google Scholar 

  109. Bal G, Van der Veken P, Antonov D et al (2003) Prolylisoxazoles: potent inhibitors of prolyloligopeptidase with antitrypanosomal activity. Bioorg Med Chem Lett 13:2875–2878

    PubMed  CAS  Google Scholar 

  110. Grellier P, Vendeville S, Joyeau R (2001) Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. J Biol Chem 276:47078–47086

    PubMed  CAS  Google Scholar 

  111. McLuskey K, Paterson NG, Bland ND et al (2010) Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J Biol Chem 285:39249–39259

    PubMed  CAS  Google Scholar 

  112. Li H, Child MA, Bogyo M (2012) Proteases as regulators of pathogenesis: examples from the Apicomplexa. Biochim Biophys Acta 1824:177–185

    PubMed  CAS  Google Scholar 

  113. Toubarro D, Lucena-Robles M, Nascimento G et al (2009) An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 39:1319–1330

    PubMed  CAS  Google Scholar 

  114. Hasnain SZ, McGuckin MA, Grencis RK et al (2012) Serine protease(s) secreted by the nematode Trichuris muris degrade the mucus barrier. PLoS Negl Trop Dis 6:e1856

    PubMed  CAS  Google Scholar 

  115. Toubarro D, Lucena-Robles M, Nascimento G et al (2010) Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae. J Biol Chem 285:30666–30675

    PubMed  CAS  Google Scholar 

  116. Kim K (2004) Role of proteases in host cell invasion by Toxoplasma gondii and other Apicomplexa. Acta Trop 91:69–81

    PubMed  CAS  Google Scholar 

  117. Montero E, Rafiqa S, Heckb S et al (2007) Inhibition of human erythrocyte invasion by Babesia divergens using serine protease inhibitors. Mol Biochem Parasitol 153:80–84

    PubMed  CAS  Google Scholar 

  118. Xue Q, Waldrop GL, Schey KL et al (2006) A novel slow-tight binding serine protease inhibitor from eastern oyster (Crassostrea virginica) plasma inhibits perkinsin, the major extracellular protease of the oyster protozoan parasite Perkinsus marinus. Comp Biochem Physiol B Biochem Mol Biol 145:16–26

    PubMed  Google Scholar 

  119. Andrade AS, Santoro MM, de Melo MN et al (1998) Leishmania (Leishmania) amazonensis: purification and enzymatic characterization of a soluble serine oligopeptidase from promastigotes. Exp Parasitol 89:153–160

    PubMed  Google Scholar 

  120. Morty RE, Authie E, Troeberg L et al (1999) Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol Biochem Parasitol 102:145–155

    PubMed  CAS  Google Scholar 

  121. Swenerton RK, Zhang S, Sajid M et al (2011) The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion. J Biol Chem 286:429–440

    PubMed  CAS  Google Scholar 

  122. Guedes HL, Duarte Carneiro MP, de Oliveira Gomes DC et al (2007) Oligopeptidase B from Leishmania amazonensis: molecular cloning, gene expression analysis and molecular model. Parasitol Res 101:865–875

    Google Scholar 

  123. Silva-López RE, Morgado-Díaz JA, dos Santos PT et al (2008) Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Trop 107:159–167

    PubMed  Google Scholar 

  124. Alvarez VE, Niemirowicz GT, Cazzulo JJ (2011) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim Biophys Acta 1824:195–206

    PubMed  Google Scholar 

  125. Silva Lopez RE, De Simone SG (2004) A serine protease from a detergent-soluble extract of Leishmania (Leishmania) amazonensis. Z Naturforsch C 59:590–598

    PubMed  Google Scholar 

  126. Silva-Lopez RE, Giovanni-De-Simone S (2004) Leishmania (Leishmania) amazonensis: purification and characterization of a promastigote serine protease. Exp Parasitol 107:173–182

    PubMed  Google Scholar 

  127. Silva-Lopez RE, Coelho MG, De Simone SG (2005) Characterization of an extracellular serine protease of Leishmania (Leishmania) amazonensis. Parasitology 131:85–96

    PubMed  CAS  Google Scholar 

  128. Guedes HL, Rezende JM, Fonseca MA et al (2007) Identification of serine proteases from Leishmania braziliensis. Z Naturforsch C 62:373–381

    PubMed  CAS  Google Scholar 

  129. Silva-López RE, Santos TR, Morgado-Díaz JA et al (2010) Serine protease activities in Leishmania (Leishmania) chagasi promastigotes. Parasitol Res 107:1151–1162

    PubMed  Google Scholar 

  130. Choudhury R, Bhaumik SK, De T et al (2009) Identification, purification and characterization of a secretory serine protease in an Indian strain of Leishmania donovani. Mol Cell Biochem 320:1–14

    PubMed  CAS  Google Scholar 

  131. Alves CR, Corte-Real S, Bourguignon SC et al (2005) Leishmania amazonensis: early proteinase activities during promastigote-amastigote differentiation in vitro. Exp Parasitol 109:38–48

    PubMed  CAS  Google Scholar 

  132. Morgado-Diaz JA, Silva-Lopez RE, Alves CR et al (2005) Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania) amazonensis promastigotes. Mem Inst Oswaldo Cruz 100:377–383

    PubMed  CAS  Google Scholar 

  133. Silva-Lopez RE, Morgado-Díaz JA, Alves CR et al (2004) Subcellular localization of an extracellular serine protease in Leishmania (Leishmania) amazonensis. Parasitol Res 93:328–331

    PubMed  CAS  Google Scholar 

  134. Choudhury R, Das P, Bhaumik SK et al (2010) In situ immunolocalization and stage-dependent expression of a secretory serine protease in Leishmania donovani and its role as a vaccine candidate. Clin Vac Immunol 17:660–667

    CAS  Google Scholar 

  135. Bañuls AL, Hide M, Prugnolle F (2007) Leishmania and the Leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol 64:1–113

    PubMed  Google Scholar 

  136. Swenerton RK, Knudsen GM, Sajid M et al (2010) Leishmania subtilisin is a maturase for the trypanothione reductase system and contributes to disease pathology. J Biol Chem 285:31120–31129

    PubMed  CAS  Google Scholar 

  137. Munday JC, McLuskey K, Brown E et al (2011) Oligopeptidase B deficient mutants of Leishmania major. Mol Biochem Parasitol 175:49–57

    PubMed  CAS  Google Scholar 

  138. Guedes HL, Pinheiro RO, Chaves SP et al (2010) Serine proteases of Leishmania amazonensis as immunomodulatory and disease-aggravating components of the crude LaAg. Vaccine 28:5491–5496

    CAS  Google Scholar 

  139. Silva VM, Larangeira DF, Oliveira PR et al (2011) Enhancement of experimental cutaneous leishmaniasis by Leishmania molecules is dependent on interleukin-4, serine protease/esterase activity, and parasite and host genetic backgrounds. Infect Immun 79:1236–1243

    PubMed  CAS  Google Scholar 

  140. Choudhury R, Das P, De T et al (2013) 115 kDa serine protease confers sustained protection to visceral leishmaniasis caused by Leishmania donovani via IFN-γ induced down-regulation of TNF-α mediated MMP-9 activity. Immunobiology 218:114–126

    PubMed  CAS  Google Scholar 

  141. Valdivieso E, Dagger F, Rascón A (2007) Leishmania mexicana: identification and characterization of an aspartyl proteinase activity. Exp Parasitol 116:77–82

    PubMed  CAS  Google Scholar 

  142. Perteguer MJ, Gómez-Puertas P, Cañavate C et al (2013) Ddi1-like protein from Leishmania major is an active aspartyl proteinase. Cell Stress Chaperones 18:171–181

    PubMed  CAS  Google Scholar 

  143. Savoia D, Allice T, Tovo PA (2005) Antileishmanial activity of HIV protease inhibitors. Int J Antimicrob Agents 26:92–94

    PubMed  CAS  Google Scholar 

  144. Trudel N, Garg R, Messier N et al (2008) Intracellular survival of Leishmania species that cause visceral leishmaniasis is significantly reduced by HIV-1 protease inhibitors. J Infect Dis 198:1292–1299

    PubMed  CAS  Google Scholar 

  145. Kumar P, Lodge R, Trudel N et al (2010) Nelfinavir, an HIV-1 protease inhibitor, induces oxidative stress-mediated, caspase-independent apoptosis in Leishmania amastigotes. PLoS Negl Trop Dis 4:e642

    PubMed  Google Scholar 

  146. Valdivieso E, Rangel A, Moreno J et al (2010) Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp. Exp Parasitol 126:557–563

    PubMed  CAS  Google Scholar 

  147. Santos LO, Marinho FA, Altoé EF et al (2009) HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS One 4:4918

    Google Scholar 

  148. Zhang T, Maekawa Y, Yasutomo K et al (2000) Pepstatin A-sensitive aspartic proteases in lysosome are involved in degradation of the invariant chain and antigen-processing in antigen presenting cells of mice infected with Leishmania major. Biochem Biophys Res Commun 276:693–701

    PubMed  CAS  Google Scholar 

  149. Giudice P, Mary-Krause M, Pradier C et al (2002) Impact of highly active antiretroviral therapy on the incidence of visceral leishmaniasis in a French cohort of patients infected with human immunodeficiency virus. J Infect Dis 186:1366–1370

    PubMed  Google Scholar 

  150. Rosa R, Pineda JA, Delgado J et al (2002) Incidence of and risk factors for symptomatic visceral leishmaniasis among human immunodeficiency virus type 1-infected patients from Spain in the era of highly active antiretroviral therapy. J Clin Microbiol 40:762–776

    Google Scholar 

  151. Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34:1–13

    PubMed  Google Scholar 

  152. Silva-López RE (2010) Leishmania proteases: new targets for rational drug development. Quim Nova 33:1541–1548

    Google Scholar 

  153. Armstrong PB (2006) Proteases and protease inhibitors: a balance of activities in host pathogen interaction. Immunobiology 21:263–281

    Google Scholar 

  154. Sabotič J, Kos J (2012) Microbial and fungal protease inhibitors—current and potential applications. Appl Microbiol Biotechnol 93:1351–1375

    PubMed  Google Scholar 

  155. Cazzulo JJ (2002) Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of Chagas disease. Curr Top Med Chem 2:1261–1271

    PubMed  CAS  Google Scholar 

  156. Fear G, Komarnytsky S, Raskin I (2007) Protease inhibitors and their peptidomimetic derivatives as potential drugs. Pharmacol Ther 113:354–368

    PubMed  CAS  Google Scholar 

  157. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    PubMed  CAS  Google Scholar 

  158. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9:690–701

    PubMed  CAS  Google Scholar 

  159. Santos ALS (2011) Protease expressions by microorganisms and its relevance to crucial physiological/pathological events. World J Biol Chem 2:48–58

    PubMed  Google Scholar 

  160. Safavi E, Rostami A (2012) Role of serine proteases in inflammation: Bowman–Birk protease inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol 93:428–433

    PubMed  CAS  Google Scholar 

  161. Besterio S, Coombs GH, Mottram JC (2004) A potential role of ICP, a Leishmanial inhibitor of cysteine peptidases, in the interaction between host and parasite. Mol Microbial 54:1224–1236

    Google Scholar 

  162. Rosenthal PJ, Lee GK, Smith RE (1993) Inhibition of a Plasmodium vinckei cysteine proteinase cures murine malaria. J Clin Invest 91:1052–1056

    PubMed  CAS  Google Scholar 

  163. Doyle PS, Zhou YM, Engel JC et al (2007) A cysteine protease inhibitor cures Chagas’ disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 51:3932–3939

    PubMed  CAS  Google Scholar 

  164. Croft SL (2008) Kinetoplastida: new therapeutic strategies. Parasite 15:522–527

    PubMed  CAS  Google Scholar 

  165. Robertson CD (1999) The Leishmania mexicana proteasome. Mol Biochem Parasitol 103:49–60

    PubMed  CAS  Google Scholar 

  166. Steert K, Berg M, Mottram JC et al (2010) α-ketoheterocycles as inhibitors of Leishmania mexicana cysteine protease CPB. Chem Med Chem 5:1734–1748

    PubMed  CAS  Google Scholar 

  167. Gontijo VS, Judice WAS, Codonho B et al (2012) Leishmanicidal, antiproteolytic and antioxidant evaluation of natural biflavonoids isolated from Garcinia brasiliensis and their semisynthetic derivatives. Euro J Med Chem 58:613–623

    CAS  Google Scholar 

  168. Gantt KR, Schultz-Cherry S, Rodriguez N et al (2003) Activation of TGF-β by Leishmania chagasi: importance for parasite survival in macrophages. J Immunol 170:2613–2620

    PubMed  CAS  Google Scholar 

  169. Lima AK, Elias CG, Souza JE et al (2009) Dissimilar peptidase production by avirulent and virulent promastigotes of Leishmania braziliensis: inference on the parasite proliferation and interaction with macrophages. Parasitology 136:1179–1191

    PubMed  CAS  Google Scholar 

  170. Bangs JD, Ransom DA, Nimick M et al (2001) In vitro cytocidal effects on Trypanosoma brucei and inhibition of Leishmania major GP63 by peptidomimetic metalloproteases inhibitors. Mol Biochem Parasitol 114:111–117

    PubMed  CAS  Google Scholar 

  171. Das A, Ali N (2012) Vaccine development against Leishmania donovani. Front Immunol 3:99

    PubMed  CAS  Google Scholar 

  172. White RE, Powell DJ, Berry C (2011) HIV proteinase inhibitors target the Ddi1-like protein of Leishmania parasites. FASEB J 25:1729–1736

    PubMed  CAS  Google Scholar 

  173. Santos LO, Vitorio BS, Branquinha MH et al (2013) Nelfinavir is effective in inhibiting the multiplication and aspartic peptidase activity of Leishmania species, including strains obtained from HIV-positive patients. J Antimicrob Chemother 68:348–353. doi:10.1093/jac/dks410

    PubMed  CAS  Google Scholar 

  174. Demarchi IG, Silveira TG, Ferreira IC, Lonardoni MV (2012) Effect of HIV protease inhibitors on new world Leishmania. Parasitol Int 61:538–544

    PubMed  CAS  Google Scholar 

  175. Griensven J, Diro E, Lopez-Velez R et al (2013) HIV-1 protease inhibitors for treatment of visceral leishmaniasis in HIV-co-infected individuals. Lancet Infect Dis 13:251–259

    PubMed  Google Scholar 

  176. Pimentel IAS, de Siqueira PC, Katz S et al (2012) In vitro and in vivo activity of an organic tellurium compound on Leishmania (Leishmania) chagasi. PLoS One 7:e48780. doi:10.1371/journal.pone.0048780

    CAS  Google Scholar 

  177. Siqueira Paladi C, Pimentel IAS, Katz S et al (2012) In vitro and in vivo activity of palladacycle complex on Leishmania (Leishmania) amazonensis. PLoS Negl Trop Dis 6:e1626. doi:10.1371/journal.pntd.0001626

    Google Scholar 

  178. Lima AP, Reis FC, Costa TF (2013) Cysteine peptidase inhibitors in trypanosomatid parasites. Curr Med Chem 20:3152–3173

    PubMed  CAS  Google Scholar 

  179. Gemma S, Giovani S, Brindisi M, Tripaldi P (2012) Quinolylhydrazones as novel inhibitors of plasmodium falciparum serine protease PfSUB1. Bioorg Med Chem Lett 22:5317–5321

    PubMed  CAS  Google Scholar 

  180. Witheres-Martinez C, Jean L, Blackman MJ (2004) Subtilisin like proteases of the malaria parasite. Mol Microbiol 53:55–63

    Google Scholar 

  181. Krowarsch D, Cierpicki T, Jelen F et al (2003) Canonical protein inhibitors of serine proteases. Cell Mol Life Sci 60:2427–2444

    PubMed  CAS  Google Scholar 

  182. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403

    PubMed  CAS  Google Scholar 

  183. McKerrow JH, Engel JC, Caffrey CR (1999) Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg Med Chem 74:639–644

    Google Scholar 

  184. Roggwiller E, Bétoulle ME, Blisnick T et al (1996) A role for erythrocyte band 3 degradation by the parasite gp76 serine protease in the formation of the parasitophorous vacuole during invasion of erythrocytes by Plasmodium falciparum. Mol Biochem Parasitol 82:13–24

    PubMed  CAS  Google Scholar 

  185. Ehmke V, Heindl C, Rottmann M, Freymond C, Schweizer WB, Brun R, Stich A, Schirmeister T, Diederich F (2011) Potent and selective inhibition of cysteine proteases from Plasmodium falciparum and Trypanosoma brucei. Chem Med Chem 6:273–278

    PubMed  CAS  Google Scholar 

  186. Conseil V, Soete M, Dubremetz JF (1999) Serine protease inhibitors block invasion of host cells by Toxoplasma gondii. Antimicrob Agents Chemother 46:1358–1361

    Google Scholar 

  187. Peyre JE, Xue Q, Itoh N et al (2010) Cooper Serine protease inhibitor cvSI-1 potential role in the eastern oyster host defense against the protozoan parasite Perkinsus marinus. Develop Comp Immunol 34:84–92

    Google Scholar 

  188. Motta FN, Bastos IMD, Faudry E et al (2012) The Trypanosoma cruzi virulence factor oligopeptidase B (OPBTc) assembles into an active and stable dimer. PLoS One 7:e30431

    PubMed  CAS  Google Scholar 

  189. Morty RE, Troeberg L, Pike RN et al (1998) A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Lett 433:251–256

    PubMed  CAS  Google Scholar 

  190. Silva-Lopez RE, Morgado-Díaz JA, Chávez MA et al (2007) Effects of serine protease inhibitors on viability and morphology of Leishmania (Leishmania) amazonensis promastigotes. Parasitol Res 101:1627–1635

    PubMed  CAS  Google Scholar 

  191. Pereira IO, Assis DM, Juliano MA et al (2011) Natural products from Garcinia brasiliensis as Leishmania protease inhibitors. J Med Food 14:557–562

    PubMed  CAS  Google Scholar 

  192. Bastos IM, Motta FN, Grellier P et al (2013) Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for chagas disease, leishmaniasis and African trypanosomiasis. Curr Med Chem 20:3103–3115

    PubMed  CAS  Google Scholar 

  193. Coetzer THT, Goldring JPD, Huson LEJ (2008) Oligopeptidase B: a processing peptidase involved in pathogenesis. Biochimie 90:336–344

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are also due to the University Grant Commission (New Delhi) and the Council of Scientific & Industrial Research (New Delhi), Govt. of India for financing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapati Chakraborti Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Das, P., Alam, M.N., De, T., Chakraborti, T. (2013). Proteases as Virulence Factors in Leishmania: Focus on Serine Proteases as Possible Therapeutic Targets. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9233-7_9

Download citation

Publish with us

Policies and ethics