Skip to main content

Phononic Crystal Membranes (Slabs or Plates)

  • Chapter
Phononic Crystals

Abstract

In the previous chapters, an overview of different types of phononic crystal (PnC) structures and their properties was given. Methods for the analysis and simulation of such structures were also discussed. Among different types of PnC structures, planar PnCs are of particular interest due to their flexibility in fabrication and the possibility of mass production using lithography-based fabrication techniques. Two of the main categories of planar acoustic wave devices are surface acoustic wave (SAW) devices and the devices with a finite thickness (called plates, slabs, or membranes). SAWs form on a free surface of a thick (compared to the wavelength of interest) substrate while most of the energy is near the surface of the substrate. SAWs are of great interest in design of wireless communications devices. In the previous chapter, some of the properties, methods of fabrication, and characterization of PnC structures for handling SAWs (for abbreviation we will use “SAW PnCs” for referring to them from now on) were discussed. In this chapter, we discuss an important drawback that SAW PnCs are prone to and discuss PnC slab structures which are periodic structures with a finite thickness of the order of the wavelengths of pertinence. The available methods of simulation, fabrication, and characterization of PnC slab devices and their advantages over SAW PnC devices will be addressed. Then an example of a practical PnC slab structure with the stages of design simulation, fabrication, bandgap engineering is given followed by a brief description of functional devices developed based on these structures for wireless communications and sensing applications at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.G. Joshi, S.M. Ieee, B.D. Zaitsev, Reflection of plate acoustic waves produced by a periodic array of mechanical load strips or grooves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(12), 1730–1734 (2002)

    Article  Google Scholar 

  2. B.A. Auld, Waves and vibrations in periodic piezoelectric composite materials. Mater. Sci. Eng. A 122, 65–70 (1989)

    Article  Google Scholar 

  3. M.M. Sigalas, E.N. Economou, Elastic and acoustic wave band-structure. J. Sound Vib. 158(2), 377–382 (1992)

    Article  Google Scholar 

  4. L. Ye, G. Cody, M. Zhou, P. Sheng, Observation of bending wave localization and quasi mobility edge in 2 dimensions. Phys. Rev. Lett. 69(21), 3080–3082 (1992)

    Article  Google Scholar 

  5. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, V. Laude, Complete band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74(4), 46610–46615 (2006)

    Article  Google Scholar 

  6. B. Bonello, C. Charles, F. Ganot, Lamb waves in plates covered by a two-dimensional phononic film. Appl. Phys. Lett. 90(2), 021909 (2007)

    Google Scholar 

  7. S. Mohammadi, A.A. Eftekhar, A. Khelif, H. Moubchir, R. Westafer, W.D. Hunt, A. Adibi, Complete phononic bandgaps and bandgap maps in two-dimensional silicon phononic crystal plates. Electron. Lett. 43, 898–899 (2007)

    Article  Google Scholar 

  8. S. Mohammadi, A.A. Eftekhar, A. Khelif, W.D. Hunt, A. Adibi, Evidence of large high-frequency complete phononic band gaps in silicon phononic crystal plates. Appl. Phys. Lett. 92(22), 221905-1-3 (2008)

    Google Scholar 

  9. J.O. Vasseur et al., Waveguiding in two-dimensional piezoelectric phononic crystal plates. J. Appl. Phys. 101(11), 114904 (2007)

    Google Scholar 

  10. S. Mohammadi, A.A. Eftekhar, A. Khelif, A. Adibi, Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Opt. Express 18(9), 9164–9172 (2010)

    Article  Google Scholar 

  11. V. Laude et al., Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Opt. Express 19(10), 9690–9698 (2011)

    Google Scholar 

  12. A.H. Safavi-Naeini, O. Painter, Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express 18(14), 14926–14943 (2010)

    Article  Google Scholar 

  13. I. El-Kady, R.H. Olsson, J.G. Fleming, Phononic band-gap crystals for radio frequency communications. Appl. Phys. Lett. 92(23), 233504 (2008)

    Google Scholar 

  14. C. Hsu, T.-T. Wu, Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates. Phys. Rev. B 74(14) (2006)

    Google Scholar 

  15. K.H. Fung, Z. Liu, C.T. Chan, Transmission properties of locally resonant sonic materials with finite slab thickness. Z. Kristallogr. 220(9–10), 871–876 (2005)

    Google Scholar 

  16. D. Yu, G. Wang, Y. Liu, J. Wen, J. Qui, Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures. Chin. Phys. 15(2) (2006)

    Google Scholar 

  17. J.-C. Hsu, T.-T. Wu, Lamb waves in binary locally resonant phononic plates with two-dimensional lattices. Appl. Phys. Lett. 90(20), 201904 (2007)

    Google Scholar 

  18. B. Djafari-Rouhani, Y. Pennec, H. Larabi, Band structure and wave guiding in a phononic crystal constituted by a periodic array of dots deposited on a homogeneous plate. Proc. SPIE 7223, 72230F-72230F-10 (2009)

    Google Scholar 

  19. M. Oudich, M.B. Assouar, Z. Hou, Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate. Appl. Phys. Lett. 97(19), 193503 (2010)

    Google Scholar 

  20. J.-C. Hsu, Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators. J. Phys. D: Appl. Phys. 44(5), 055401 (2011)

    Google Scholar 

  21. S. Mohammadi, A. Khelif, R. Westafer, E. Massey, W.D. Hunt, A. Adibi, Full band-gap silicon phononic crystals for surface acoustic waves, in Proc. 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, November, 2006

    Google Scholar 

  22. S. Benchabane, A. Khelif, J.Y. Rauch, L. Robert, V. Laude, Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 65601–65612 (2006)

    Article  Google Scholar 

  23. J.H. Sun, T.T. Wu, Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method. Phys. Rev. B 74, 174305–174307 (2006)

    Article  Google Scholar 

  24. T.-T. Wu, W.-S. Wang, J.-H. Sun, J.-C. Hsu, Y.-Y. Chen, Utilization of phononic-crystal reflective gratings in a layered surface acoustic wave device. Appl. Phys. Lett. 94 (2009)

    Google Scholar 

  25. S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, V. Laude, Observation of surface-guided waves in holey hypersonic phononic crystal. Appl. Phys. Lett. 98, 171908 (2011)

    Article  Google Scholar 

  26. R.H. Olsson, I.F. El-Kady, M.F. Su, M.R. Tuck, J.G. Fleming, Microfabricated VHF acoustic crystals and waveguides. Sens. Actuators A: Phys. 145, 87–93 (2008)

    Article  Google Scholar 

  27. C.M. Reinke, M.F. Su, R.H. Olsson, I. El-Kady, Realization of optimal bandgaps in solid–solid, solid–air, and hybrid solid–air–solid phononic crystal slabs. Appl. Phys. Lett. 98, 061912 (2011)

    Article  Google Scholar 

  28. Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. Vasseur, A. Hladky-Hennion, Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Phys. Rev. B 78(10), 1–8 (2008)

    Article  Google Scholar 

  29. Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P.A. Deymier, Two-dimensional phononic crystals: examples and applications. Surf. Sci. Rep. 65(8), 229–291 (2010)

    Article  Google Scholar 

  30. S. Halkjær, O. Sigmund, J.S. Jensen, Maximizing band gaps in plate structures. Struct. Multidiscip. Opt. 32(4), 263–275 (2006)

    Article  Google Scholar 

  31. F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen, V. Laude, Waveguiding inside the complete band gap of a phononic crystal slab. Phys. Rev. E 76(5), 1–6 (2007)

    Article  Google Scholar 

  32. N.K. Kuo, C.J. Zuo, G. Piazza, Microscale inverse acoustic band gap structure in aluminum nitride. Appl. Phys. Lett. 95, 93501–93503 (2009)

    Article  Google Scholar 

  33. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 1995)

    MATH  Google Scholar 

  34. M.M. Sigalas, N. García, Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys. 87(6), 3122 (2000)

    Google Scholar 

  35. P.-F. Hsieh, T.-T. Wu, J.-H. Sun, Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 148–158 (2006)

    Article  Google Scholar 

  36. S. Mohammadi, Phononic Band Gap Micro/Nano-Mechanical Structures for Communications and Sensing Applications (Georgia Institute of Technology, Atlanta, 2010)

    Google Scholar 

  37. J. Lourtioz, H. Benisty, V. Berger, J. Gerard, D. Maystre, A. Tchelnokov, Photonic crystals: towards nanoscale photonic devices (2005)

    Google Scholar 

  38. M. Wilm, S. Ballandras, V. Laude, T. Pastureaud, A full 3D plane-wave-expansion model for 1–3 piezoelectric composite structures. J. Acoust. Soc. Am. 112(3), 943–952 (2002)

    Article  Google Scholar 

  39. J.-C. Hsu, T.-T. Wu, Calculations of Lamb wave band gaps and dispersions for piezoelectric phononic plates using Mindlin’s theory-based plane wave expansion method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(2), 431–441 (2008)

    Article  Google Scholar 

  40. COMSOL multi-physics modeling guide, v. 3.3, August 2006

    Google Scholar 

  41. I.E. Psarobas, N. Stefanou, A. Modinos, Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B 62(1), 278–291 (2000)

    Article  Google Scholar 

  42. C.Y. Qiu, Z.Y. Liu, J. Mei, M.Z. Ke, The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals. Solid State Commun. 134(11), 765–770 (2005)

    Article  Google Scholar 

  43. S. Noda, T. Baba, O. Industry, Roadmap on Photonic Crystals (Springer, Berlin, 2003)

    Book  Google Scholar 

  44. X. Zhang, T. Jackson, E. Lafond, P. Deymier, J. Vasseur, Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates. Appl. Phys. Lett. 88(4), 041911 (2006)

    Google Scholar 

  45. T. Gorishnyy, C.K. Ullal, M. Maldovan, G. Fytas, E.L. Thomas, Hypersonic phononic crystals. Phys. Rev. Lett. 94(11) (2005)

    Google Scholar 

  46. D. Profunser, O. Wright, O. Matsuda, Imaging ripples on phononic crystals reveals acoustic band structure and Bloch harmonics. Phys. Rev. Lett. 97(5), 1–4 (2006)

    Article  Google Scholar 

  47. K.E. Petersen, Silicon as a mechanical material. Proc. IEEE 70(5), 420–457 (1982)

    Article  Google Scholar 

  48. S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, High-Q micromechanical resonators in a two-dimensional phononic crystal slab. Appl. Phys. Lett. 94(5), 051906-051901-051903 (2009)

    Google Scholar 

  49. L.L. Chang, L. Esaki, R. Tsu, Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24(12), 593–595 (1974)

    Article  Google Scholar 

  50. Z.L. Hao, A. Erbil, F. Ayazi, An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens. Actuators A: Phys. 109(1–2), 156–164 (2003)

    Article  Google Scholar 

  51. S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, Demonstration of large complete phononic band gaps and waveguiding in high-frequency silicon phononic crystal slabs, in 2008 IEEE International Frequency Control Symposium, vol. 43, no. 21066, pp. 768–772, May 2008

    Google Scholar 

  52. T.-C. Wu, T.-T. Wu, J.-C. Hsu, Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface. Phys. Rev. B 79(10), 1–6 (2009)

    Google Scholar 

  53. S. Mohammadi, A.A. Eftekhar, A. Adibi, Support loss-free micro/nano-mechanical resonators using phononic crystal slab waveguides, in IEEE Frequency Control Symposium, 2010, pp. 521–523

    Google Scholar 

  54. S. Mohammadi, A.A. Eftekhar, R. Pourabolghasem, A. Adibi, Simultaneous high-Q confinement and selective direct piezoelectric excitation of flexural and extensional lateral vibrations in a silicon phononic crystal slab resonator. Sens. Actuators A: Phys. 167(2), 524–530 (2011)

    Article  Google Scholar 

  55. S. Mohammadi, A. Adibi, Waveguide-based phononic crystal micro/nano-mechanical high-Q resonators. J. Microelectromech. Syst. (to appear)

    Google Scholar 

  56. S. Mohammadi, A.A. Eftekhar, A. Adibi, Resonator/waveguide coupling in phononic crystals for demultiplexing and filtering applications, in Ultrasonics Symposium (IUS), 2010 IEEE, pp. 155–157

    Google Scholar 

  57. J. Pierre, O. Boyko, L. Belliard, J.O. Vasseur, B. Bonello, Negative refraction of zero order flexural Lamb waves through a two-dimensional phononic crystal. Appl. Phys. Lett. 97(12), 121919 (2010)

    Google Scholar 

  58. M.K. Lee, P.S. Ma, I.K. Lee, H.W. Kim, Y.Y. Kim, Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98(1), 011909 (2011)

    Google Scholar 

  59. T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C.S. Lin, T.J. Huang, Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Appl. Phys. Lett. 98(17) (2011)

    Google Scholar 

  60. S. Mohammadi, A.A. Eftekhar, A. Adibi, Large simultaneous band gaps for photonic and phononic crystal slabs, in 2008 Conference on Lasers and Electro-Optics, vol. 1, no. c, pp. 1–2, May 2008

    Google Scholar 

  61. Y. Pennec, B. Rouhani, E. El Boudouti, C. Li, Y. El Hassouani, J. Vasseur, N. Papanikolaou, S. Benchabane, V. Laude, A. Martinez, Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Opt. Express 18, 14301–14310 (2010)

    Article  Google Scholar 

  62. B. Djafari Rouhani et al., Band gap engineering in simultaneous phononic and photonic crystal slabs. Appl. Phys. A 103(3), 735–739 (2010)

    Article  MathSciNet  Google Scholar 

  63. M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, O. Painter, A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459(7246), 550–555 (2009)

    Article  Google Scholar 

  64. A.H. Safavi-Naeini, O. Painter, Proposal for an optomechanical traveling wave phonon–photon translator. New J. Phys. 13(1), 013017 (2011)

    Google Scholar 

  65. Y. El Hassouani et al., Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate. Phys. Rev. B 82(15), 1–7 (2010)

    Article  Google Scholar 

  66. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001)

    Article  Google Scholar 

  67. R. Yang, G. Chen, Thermal conductivity modeling of periodic two-dimensional nanocomposites. Phys. Rev. B 69(19), 1–10 (2004)

    Google Scholar 

  68. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5(10), 718–721 (2010)

    Article  Google Scholar 

  69. P.E. Hopkins, L.M. Phinney, P.T. Rakich, R.H. Olsson, I. El-Kady, Phonon considerations in the reduction of thermal conductivity in phononic crystals. Appl. Phys. A 103(3), 575–579 (2010)

    Article  Google Scholar 

  70. P.E. Hopkins et al., Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11(1), 107–112 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Adibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohammadi, S., Adibi, A. (2016). Phononic Crystal Membranes (Slabs or Plates). In: Khelif, A., Adibi, A. (eds) Phononic Crystals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9393-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9393-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9392-1

  • Online ISBN: 978-1-4614-9393-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics