Skip to main content

Pharmacology of Botulinum Neurotoxins: Exploitation of Their Multifunctional Activities as Transmitter Release Inhibitors and Neuron-Targeted Delivery Vehicles

  • Chapter
  • First Online:
Molecular Aspects of Botulinum Neurotoxin

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 4))

  • 965 Accesses

Abstract

Quantal transmitter release from nerves is inhibited by all seven serotypes (A–G) of botulinum neurotoxin (BoNT), with some subtle but functional differences. Commonalities and dissimilarities in these proteins, and new recombinant forms, are highlighted in terms of their multiple activities and domains responsible for binding to the neuronal acceptors, subsequent endocytosis, translocation and proteolytic inactivation of intracellular soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) culminating in the blockade of neuro-exocytosis lasting for weeks or months. The neurotoxins bind to dual acceptors, gangliosides and intra-lumenal regions of vesicular proteins, and co-traffic into neurons. Subsequently, their proteases pass to the cytosol via a channel created in the endosomal limiting membrane and cleave distinct bonds in the substrate SNARE(s). Modification of these targets is responsible for their characteristic pharmacological activities. The prolonged duration of type A seems attributable to an identified stabilisation motif that extends the longevity of its protease. BoNTs have proved instrumental in deciphering a molecular basis for regulated exocytosis; now, emerging knowledge is helping to explain why synchronisation of released quanta of transmitter is perturbed by certain serotypes (/B, /D and /F) and not others (/A, /C1 and /E). Novel chimeras created by protein engineering are endowed with advantageous features of two serotypes for targeting sensory neurons and alleviating inflammatory pain (LC/E-BoTIM/A). Likewise, an innocuous mutant of /B (BoTIM/B) fused to core streptavidin (CS-BoTIM/B) has been exploited for guiding molecular cargo and viral vectors into nerve cells. These novel discoveries exemplify the versatility of BoNT in targeting and delivering therapeutics into neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dolly JO, Lawrence GW, Meng J, Wang J, Ovsepian SV (2009) Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol 9:326–335

    CAS  PubMed  Google Scholar 

  2. Popoff MR, Bouvet P (2009) Clostridial toxins. Future Microbiol 4:1021–1064

    CAS  PubMed  Google Scholar 

  3. Dolly JO, Wang J, Zurawski TH, Meng J (2011) Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. FEBS J 278:4454–4466

    CAS  PubMed  Google Scholar 

  4. Lacy DB, Tepp W, Cohen AC, DasGupta BR, Stevens RC (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 5:898–902

    CAS  PubMed  Google Scholar 

  5. Schiavo G, van der Goot FG (2001) The bacterial toxin toolkit. Nat Rev Mol Cell Biol 2:530–537

    CAS  PubMed  Google Scholar 

  6. Simpson LL (1986) Molecular pharmacology of botulinum toxin and tetanus toxin. Annu Rev Pharmacol Toxicol 26:427–453

    CAS  PubMed  Google Scholar 

  7. Dolly JO, Black J, Williams RS, Melling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307:457–460

    CAS  PubMed  Google Scholar 

  8. Black JD, Dolly JO (1986) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol 103:521–534

    CAS  PubMed  Google Scholar 

  9. Black JD, Dolly JO (1986) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103:535–544

    CAS  PubMed  Google Scholar 

  10. Hughes R, Whaler BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol 160:221–233

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Montal M (2010) Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 79:591–617

    Google Scholar 

  12. Poulain B et al (1988) Neurotransmitter release is blocked intracellularly by botulinum neurotoxin, and this requires uptake of both toxin polypeptides by a process mediated by the larger chain. Proc Natl Acad Sci U S A 85:4090–4094

    CAS  PubMed Central  PubMed  Google Scholar 

  13. McInnes C, Dolly JO (1990) Ca2( + )-dependent noradrenaline release from permeabilised PC12 cells is blocked by botulinum neurotoxin A or its light chain. FEBS Lett 261:323–326

    CAS  PubMed  Google Scholar 

  14. McMahon HT et al (1992) Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J Biol Chem 267:21338–21343

    CAS  PubMed  Google Scholar 

  15. Foster KA (2009) Engineered toxins: new therapeutics. Toxicon 54:587–592

    CAS  PubMed  Google Scholar 

  16. Goodnough MC et al (2002) Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett 513:163–168

    CAS  PubMed  Google Scholar 

  17. Weller U, Dauzenroth ME, Gansel M, Dreyer F (1991) Cooperative action of the light chain of tetanus toxin and the heavy chain of botulinum toxin type A on the transmitter release of mammalian motor endplates. Neurosci Lett 122:132–134

    CAS  PubMed  Google Scholar 

  18. Zhang P et al (2009) An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacol 9:12

    PubMed Central  PubMed  Google Scholar 

  19. Bowers WJ, Breakefield XO, Sena-Esteves M (2011) Genetic therapy for the nervous system. Hum Mol Genet 20:R28–R41

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Meininger V (2011) ALS, what new 144 years after Charcot? Arch Ital Biol 149:29–37

    PubMed  Google Scholar 

  21. Nanou A, Azzouz M (2009) Gene therapy for neurodegenerative diseases based on lentiviral vectors. Prog Brain Res 175:187–200

    CAS  PubMed  Google Scholar 

  22. Schlachetzki F, Zhang Y, Boado RJ, Pardridge WM (2004) Gene therapy of the brain: the trans-vascular approach. Neurology 62:1275–1281

    CAS  PubMed  Google Scholar 

  23. Stanzione P, Tropepi D (2011) Drugs and clinical trials in neurodegenerative diseases. Ann Ist Super Sanita 47:49–54

    PubMed  Google Scholar 

  24. Li Y et al (2001) Recombinant forms of tetanus toxin engineered for examining and exploiting neuronal trafficking pathways. J Biol Chem 276:31394–31401

    CAS  PubMed  Google Scholar 

  25. Pellett S et al (2011) Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A. Biochem Biophys Res Commun 405:673–677

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Hill KK et al (2007) Genetic diversity among botulinum neurotoxin-producing Clostridial strains. J Bacteriol 189:818–832

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Moriishi K et al (1996) Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim Biophys Acta 1307:123–126

    PubMed  Google Scholar 

  28. Dolly JO, Lande S, Wray DW (1987) The effects of in vitro application of purified botulinum neurotoxin at mouse motor nerve terminals. J Physiol 386:475–484

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Morbiato L et al (2007) Neuromuscular paralysis and recovery in mice injected with botulinum neurotoxins A and C. Eur J Neurosci 25:2697–2704

    PubMed  Google Scholar 

  30. Molgo J, Siegel LS, Tabti N, Thesleff S (1989) A study of synchronization of quantal transmitter release from mammalian motor endings by the use of botulinal toxins type A and D. J Physiol 411:195–205

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Sellin LC, Kauffman JA, DasGupta BR (1983) Comparison of the effects of botulinum neurotoxin types A and E at the rat neuromuscular junction. Medical Biology 61:120–125

    CAS  PubMed  Google Scholar 

  32. Sellin LC, Thesleff S, Dasgupta BR (1983) Different effects of types A and B botulinum toxin on transmitter release at the rat neuromuscular junction. Acta Physiol Scand 119:12733

    Google Scholar 

  33. Kauffman JA, Way JF Jr, Siegel LS, Sellin LC (1985) Comparison of the action of types A and F botulinum toxin at the rat neuromuscular junction. Toxicol Appl Pharmacol 79:211–217

    CAS  PubMed  Google Scholar 

  34. Coffield JA et al (1997) In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J Pharmacol Exp Ther 280:1489–1498

    CAS  PubMed  Google Scholar 

  35. Comella JX, Molgo J, Faille L (1993) Sprouting of mammalian motor nerve terminals induced by in vivo injection of botulinum type-D toxin and the functional recovery of paralysed neuromuscular junctions. Neurosci Lett 153:61–64

    CAS  PubMed  Google Scholar 

  36. Molgo J, Dasgupta BR, Thesleff S (1989) Characterization of the actions of botulinum neurotoxin type E at the rat neuromuscular junction. Acta Physiol Scand 137:497–501

    CAS  PubMed  Google Scholar 

  37. Simpson LL (1986) A preclinical evaluation of aminopyridines as putative therapeutic agents in the treatment of botulism. Infect Immun 52:858–862

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Adler M, Macdonald DA, Sellin LC, Parker GW (1996) Effect of 3,4-diaminopyridine on rat extensor digitorum longus muscle paralyzed by local injection of botulinum neurotoxin. Toxicon 34:237–249

    CAS  PubMed  Google Scholar 

  39. Meunier FA, Lisk G, Sesardic D, Dolly JO (2003) Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci 22:454–466

    CAS  PubMed  Google Scholar 

  40. Wang J et al (2008) Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 283:16993–17002

    CAS  PubMed  Google Scholar 

  41. Eleopra R, Tugnoli V, Rossetto O, Montecucco C, De Grandis D (1997) Botulinum neurotoxin serotype C: a novel effective botulinum toxin therapy in human. Neurosci Lett 224:91–94

    CAS  PubMed  Google Scholar 

  42. Montecucco C, Molgo J (2005) Botulinal neurotoxins: revival of an old killer. Curr Opin Pharmacol 5:274–279

    CAS  PubMed  Google Scholar 

  43. Sloop RR, Cole BA, Escutin RO (1997) Human response to botulinum toxin injection: type B compared with type A. Neurology 49:189–194

    CAS  PubMed  Google Scholar 

  44. de Paiva A, Meunier FA, Molgo J, Aoki KR, Dolly JO (1999) Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A 96:3200–3205

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Dong M et al (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312:592–596

    CAS  PubMed  Google Scholar 

  46. Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580:20114

    Google Scholar 

  47. Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4:e1000129

    PubMed Central  PubMed  Google Scholar 

  48. Dong M et al (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162:1293–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Nishiki T et al (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269:10498–10503

    CAS  PubMed  Google Scholar 

  50. Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179:1511–1522

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 7:e1002008

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Dong M et al (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19:5226–5237

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Rummel A et al (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110:1942–1954

    CAS  PubMed  Google Scholar 

  54. Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. BioChemistry 48:5631–5641

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279:30865–30870

    CAS  PubMed  Google Scholar 

  56. Simpson LL (1982) The interaction between aminoquinolines and presynaptically acting neurotoxins. J Pharmacol Exp Ther 222:43–48

    CAS  PubMed  Google Scholar 

  57. Simpson LL, Coffield JA, Bakry N (1994) Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J Pharmacol Exp Ther 269:256–262

    CAS  PubMed  Google Scholar 

  58. Lawrence G, Wang J, Chion CK, Aoki KR, Dolly JO (2007) Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E. J Pharmacol Exp Ther 320:410–418

    CAS  PubMed  Google Scholar 

  59. de Paiva A et al (1993) A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ectoacceptors and inhibits transmitter release intracellularly. J Biol Chem 268:20838–20844

    PubMed  Google Scholar 

  60. Fischer A, Montal M (2007) Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A 104:10447–10452

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Schiavo G et al (1993) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335:99–103

    CAS  PubMed  Google Scholar 

  62. Blasi J et al (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163

    CAS  PubMed  Google Scholar 

  63. Schiavo G et al (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835

    CAS  PubMed  Google Scholar 

  64. Blasi J et al (1993) Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J 12:4821–4828

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C (1995) Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J Biol Chem 270:10566–10570

    CAS  PubMed  Google Scholar 

  66. Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO (1996) Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. BioChemistry 35:2630–2636

    CAS  PubMed  Google Scholar 

  67. Williamson LC, Halpern JL, Montecucco C, Brown JE, Neale EA (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons: botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa. J Biol Chem 271:7694–7699

    CAS  PubMed  Google Scholar 

  68. Yamasaki S et al (1994) Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem 269:12764–12772

    CAS  PubMed  Google Scholar 

  69. Schiavo G et al (1993) Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J Biol Chem 268:23784–23787

    CAS  PubMed  Google Scholar 

  70. Binz T et al (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269:1617–1620

    CAS  PubMed  Google Scholar 

  71. Schiavo G, Shone CC, Rossetto O, Alexander FC, Montecucco C (1993) Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J Biol Chem 268:11516–11519

    CAS  PubMed  Google Scholar 

  72. Schiavo G et al (1994) Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J Biol Chem 269:20213–20216

    CAS  PubMed  Google Scholar 

  73. Yamasaki S et al (1994) Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem Biophys Res Commun 200:829–835

    CAS  PubMed  Google Scholar 

  74. Foran PG et al (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem 278:1363–1371

    CAS  PubMed  Google Scholar 

  75. Keller JE, Neale EA, Oyler G, Adler M (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 456:137–142

    CAS  PubMed  Google Scholar 

  76. Stanley EF, Drachman DB (1983) Botulinum toxin blocks quantal but not non-quantal release of ACh at the neuromuscular junction. Brain Res 261:172–175

    CAS  PubMed  Google Scholar 

  77. Humeau Y, Doussau F, Grant NJ, Poulain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82:427–446

    CAS  PubMed  Google Scholar 

  78. Molgo J et al (1990) Presynaptic actions of botulinal neurotoxins at vertebrate neuromuscular junctions. J Physiol (Paris) 84:152–166

    CAS  Google Scholar 

  79. Jankovic J et al (2009) Botulinum toxin: therapeutic clinical practice and science. Saunders Elsevier, Philadelphia

    Google Scholar 

  80. Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M (2008) Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 28:3689–3696

    CAS  PubMed  Google Scholar 

  81. Lawrence GW, Ovsepian SV, Wang J, Aoki KR, Dolly JO (2012) Extravesicular intraneuronal migration of internalized botulinum neurotoxins without detectable inhibition of distal neurotransmission. Biochem J 441:443–452

    CAS  PubMed  Google Scholar 

  82. Wang J et al (2011) A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem 286:637585

    Google Scholar 

  83. Fernandez-Salas E et al (2004) Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci U S A 101:3208–3213

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Aoki KR (2001) A comparison of the safety margins of botulinum neurotoxin serotypes A, B, and F in mice. Toxicon 39:1815–1820

    CAS  PubMed  Google Scholar 

  85. Yamauchi PS, Lowe NJ (2004) Botulinum toxin types A and B comparison of efficacy, duration, and dose-ranging studies for the treatment of facial rhytides and hyperhidrosis. Clin Dermatol 22:34–39

    PubMed  Google Scholar 

  86. Tintner R, Gross R, Winzer UF, Smalky KA, Jankovic J (2005) Autonomic function after botulinum toxin type A or B: a double-blind, randomized trial. Neurology 65:765–767

    CAS  PubMed  Google Scholar 

  87. Dressler D, Hallett M (2006) Immunological aspects of Botox, Dysport and Myobloc/NeuroBloc. Eur J Neurol 13 Suppl 1:11–15

    Google Scholar 

  88. Gassner HG et al (2006) Botulinum toxin to improve facial wound healing: A prospective, blinded, placebo-controlled study. Mayo Clin Proc 81:1023–1028

    CAS  PubMed  Google Scholar 

  89. Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    CAS  PubMed  Google Scholar 

  90. Daniels-Holgate PU, Dolly JO (1996) Productive and non-productive binding of botulinum neurotoxin A to motor nerve endings are distinguished by its heavy chain. J Neurosci Res 44:263–271

    CAS  PubMed  Google Scholar 

  91. Black JD, Dolly JO (1987) Selective location of acceptors for botulinum neurotoxin A in the central and peripheral nervous systems. Neuroscience 23:767–779

    CAS  PubMed  Google Scholar 

  92. Williams RS, Tse CK, Dolly JO, Hambleton P, Melling J (1983) Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur J Biochem 131:437–445

    CAS  PubMed  Google Scholar 

  93. Evans DM et al (1986) Botulinum neurotoxin type B. Its purification, radioiodination and interaction with rat-brain synaptosomal membranes. Eur J Biochem 154:409–416

    CAS  PubMed  Google Scholar 

  94. Wadsworth JD et al (1990) Botulinum type F neurotoxin. Large-scale purification and characterization of its binding to rat cerebrocortical synaptosomes. Biochem J 268:123–128

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Schiavo G, Matteoli M, Montecucco C (2000) Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766

    CAS  PubMed  Google Scholar 

  96. Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54:550–560

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Simpson LL, DasGupta BR (1983) Botulinum neurotoxin type E studies on mechanism of action and on structure-activity relationships. J Pharmacol Exp Ther 224:135–140

    CAS  PubMed  Google Scholar 

  98. Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4:e1000245

    PubMed Central  PubMed  Google Scholar 

  99. Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4:179–185

    CAS  PubMed  Google Scholar 

  100. de Paiva A et al (1993) Botulinum A like type B and tetanus toxins fulfils criteria for being a zinc-dependent protease. J Neurochem 61:2338–2341

    PubMed  Google Scholar 

  101. Meng J et al (2009) Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29:4981–4992

    CAS  PubMed  Google Scholar 

  102. Meng J, Wang J, Lawrence G, Dolly JO (2007) Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 120:2864–2874

    CAS  PubMed  Google Scholar 

  103. Hayashi T et al (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13:5051–5061

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Wang D et al (2011) Syntaxin requirement for Ca2+-triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry 50:2711–2713

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Geppert M et al (1994) Synaptotagmin I: a major Ca2+sensor for transmitter release at a central synapse. Cell 79:717–727

    CAS  PubMed  Google Scholar 

  106. Reim K et al (2001) Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104:71–81

    CAS  PubMed  Google Scholar 

  107. Yang X, Kaeser-Woo YJ, Pang ZP, Xu W, Sudhof TC (2010) Complexin clamps asynchronous release by blocking a secondary Ca(2 + ) sensor via its accessory alpha helix. Neuron 68:907–920

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem 77:615–641

    CAS  PubMed  Google Scholar 

  109. Chen X et al (2002) Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409

    CAS  PubMed  Google Scholar 

  110. Kummel D et al (2011) Complexin cross-links prefusion SNAREs into a zigzag array. Nat Struct Mol Biol 18:927–933

    PubMed Central  PubMed  Google Scholar 

  111. Krishnakumar SS et al (2011) A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mol Biol 18:934–940

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Yao J, Gaffaney JD, Kwon SE, Chapman ER (2011) Doc2 is a Ca2+sensor required for asynchronous neurotransmitter release. Cell 147:666–677

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Washbourne P et al (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19–26

    CAS  PubMed  Google Scholar 

  114. Naumann M, Jost WH, Toyka KV (1999) Botulinum toxin in the treatment of neurological disorders of the autonomic nervous system. Arch Neurol 56:914–916

    CAS  PubMed  Google Scholar 

  115. O’Leary VB et al (2011) Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons. Gene Ther 18:656–665

    PubMed  Google Scholar 

  116. Sano T, Pandori MW, Chen X, Smith CL, Cantor CR (1995) Recombinant core streptavidins. A minimum-sized core streptavidin has enhanced structural stability and higher accessibility to biotinylated macromolecules. J Biol Chem 270:28204–28209

    CAS  PubMed  Google Scholar 

  117. Edupuganti OP et al (2012) Targeted delivery into motor nerve terminals of inhibitors for SNARE-cleaving proteases via liposomes coupled to an atoxic botulinum neurotoxin. FEBS J 279:2555–2567

    CAS  PubMed  Google Scholar 

  118. Mastromarino P, Conti C, Goldoni P, Hauttecoeur B, Orsi N (1987) Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. J Gen Virol 68(Pt 9):2359-2369

    CAS  PubMed  Google Scholar 

  119. Kuder T, Szczurkowski A, Kuchinka J, Nowak E (2003) The AChE-positive ganglia in the trachea and bronchi of the cat. Folia Morphol (Warsz) 62:99-106

    Google Scholar 

  120. Kusindarta DL, Atoji Y, Yamamoto Y (2004) Nerve plexuses in the trachea and extrapulmonary bronchi of the rat. Arch Histol Cytol 67:41–55

    PubMed  Google Scholar 

  121. Koticha DK, McCarthy EE, Baldini G (2002) Plasma membrane targeting of SNAP-25 increases its local concentration and is necessary for SNARE complex formation and regulated exocytosis. J Cell Sci 115:3341–3351

    CAS  PubMed  Google Scholar 

  122. O’Sullivan GA, Mohammed N, Foran PG, Lawrence GW, Oliver DJ (1999) Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. Identification of the minimal essential C-terminal residues. J Biol Chem 274:36897–36904

    PubMed  Google Scholar 

  123. Delgado-Martinez I, Nehring RB, Sorensen JB (2007) Differential abilities of SNAP-25 homologs to support neuronal function. J Neurosci 27:9380–9391

    CAS  PubMed  Google Scholar 

  124. Mochida S, Sheng ZH, Baker C, Kobayashi H, Catterall WA (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2 + channels. Neuron 17:781–788

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Principal Investigator grant (to J.O.D.) from Science Foundation Ireland, a contract for basic research from Allergan Inc., a HDTRA contract (no. 1-07-C-0034) from the US Government, a commercialisation award from Enterprise Ireland, and funding under the Programme for Research in Third Level Institutions (PRTLI) Cycle 4. The PRTLI is co-funded through the European Regional Development Fund (ERDF), part of the European Union Structural Funds Programme 2007–2013. Group members (Drs. J. Wang, J. Meng and T. Zurawski) are thanked for their data cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ovsepian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Dolly, J., O’Leary, V., Lawrence, G., Ovsepian, S. (2014). Pharmacology of Botulinum Neurotoxins: Exploitation of Their Multifunctional Activities as Transmitter Release Inhibitors and Neuron-Targeted Delivery Vehicles. In: Foster, K. (eds) Molecular Aspects of Botulinum Neurotoxin. Current Topics in Neurotoxicity, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9454-6_2

Download citation

Publish with us

Policies and ethics