Skip to main content

Role of Arbuscular Mycorrhizal Fungi in Alleviation of Acidity Stress on Plant Growth

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses, Volume 1

Abstract

Soil acidity is a major constraint for crop production worldwide as nearly half of the potential arable lands are acidic. Plant productivity in acid soils is limited by toxic levels of aluminum (Al), manganese (Mn), and iron (Fe) as well as deficiencies of plant available nutrients, especially phosphorus (P). Plants have developed several morphological, biochemical, and physiological adaptations against acidity stress. Among these, symbiosis with arbuscular mycorrhizal (AM) fungi is a strategy plants have evolved to survive and thrive in acid soils. The AM symbiosis increases plant growth in acid soils through enhanced uptake of nutrients. A reduction in Al and Mn phytotoxicities also occurs in response to AM symbiosis through a number of mechanisms such as binding of the toxic ions by the fungal hyphae, vesicles or auxiliary cells, exudation of organic acids, phosphatases, and production of glomalin. However, like plants, AM fungal species and ecotypes also vary to a great extent in their tolerance and ability to impart plant growth benefits in acid soils. It is, therefore, essential to identify suitable AM fungi that could confer tolerance and render maximum benefits to crops in acid soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1981) Infectivity and effectiveness of vesicular arbuscular mycorrhizal fungi: Effect of inoculum type. Aust J Agri Res 32:621–630

    Google Scholar 

  • Abbott LK, Robson AD (1985) The effect of soil pH on the formation of vesicular arbuscular mycorrhiza by two species of Glomus. Aust J Soil Res 23:235–261

    Google Scholar 

  • Adams DM, Alig RJ, McCarl BA, Callaway JM, Winnett SM (1999) Minimum cost strategies for sequestering carbon in forests. Land Econ 75:360–374

    Google Scholar 

  • Alam S, Kamei S, Kawai S (2000) Phytosiderophore release from manganese induced iron deficiency in barley. J Plant Nutr 23:1193–1207

    CAS  Google Scholar 

  • Alloush GA, Clark RB (2001) Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal 32:231–254

    CAS  Google Scholar 

  • Alloush GA, Zeto SK, Clark RB (2000) Phosphorus sources, organic matter and arbuscular mycorrhiza effects on growth and mineral acquisition of chick pea grown in acidic soil. J Plant Nutr 23:1351–1369

    CAS  Google Scholar 

  • Alvarez I, Sam O, Reynaldo I, Testillano P, Risueno MC, Arias M (2012) Morphological and cellular changes in rice roots (Oryza sativa L.) caused by Al stress. Bot Stud 53:67–73

    CAS  Google Scholar 

  • An GH, Miyakawa S, Kawahara A, Osaki M, Ezawa T (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: Habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528

    Google Scholar 

  • Baligar VC, Fageria NK (1997) Nutrient use efficiency in acid soils: nutrient management and plant use efficiency. In: Monitz AC, Furlani AMC, Fageria NK, Rosolem CA, Cantarells H (eds) Plant-soil interactions at low pH: sustainable agriculture and forestry production. Brazilian Soil Science Society, Campinas, pp 75–93

    Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Google Scholar 

  • Bethlenfalvay GJ, Franson RL (1989) Manganese toxicity alleviated by mycorrhizae in soybean. J Plant Nutr 12:953–970

    CAS  Google Scholar 

  • Bhalerao SA, Prabhu DV (2013) Aluminium toxicity in plants: a review. J Appl Chem 2:447–474

    CAS  Google Scholar 

  • Blaszkowski J (1995) Glomus corymbiforme, a new species in Glomales from Poland. Mycologia 87:732–737

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    CAS  Google Scholar 

  • Borie F, Rubio R (1999) Effects of arbuscular mycorrhizae and liming on growth and mineral acquisition of Al-tolerant barley cultivars. J Plant Nutr 22:121–137

    CAS  Google Scholar 

  • Bowden JW, Nagarajah S, Barrow NJ, Posner AM, Quirk JP (1980) Describing the adsorption of phosphate, citrate and selenite on a variable-charge mineral surface. Aust J Soil Res 18:49–60

    CAS  Google Scholar 

  • Brady NC (ed) (1990) The nature and properties of soils. Macmillan Publishing Company, New York, p 230

    Google Scholar 

  • Cano C, Bago A, Dalpé Y (2009) Glomus custos sp. nov., isolated from a naturally heavy metal-polluted environment in southern Spain. Mycotaxon 109:499–512

    Google Scholar 

  • Carver BF, Ownby JD (1995) Acid soil tolerance in wheat. Adv Agron 54:117–173

    CAS  Google Scholar 

  • Cavallazzi J, Filho O, Stuermer S, Rygiewicz P, de Mendonca M (2007) Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell Tiss Org Cult 90:117–129

    Google Scholar 

  • Chen W, Li ZW, Shen X (2012) Influence of soil acidification on soil microorganisms in pear orchards. Commun Soil Sci Plant Anal 43:1833–1846

    CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    PubMed  CAS  Google Scholar 

  • Clark RB (2002) Differences among mycorrhizal fungi for mineral uptake per root length of switchgrass grown in acidic soil. J Plant Nutr 25:1753–1772

    CAS  Google Scholar 

  • Clark RB, Zeto SK (1996) Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1505–1511

    CAS  Google Scholar 

  • Clark RB, Baligar VC, Zobel RW (2005) Response of mycorrhizal switchgrass to phosphorus fractions in acidic soil. Commun Soil Sci Plant Anal 36:1337–1359

    CAS  Google Scholar 

  • Clark RB, Zeto SK, Zobel RW (1999a) Arbuscular mycorrhizal fungal isolate effectiveness on growth and root colonization of Panicum virgatum in acidic Soil. Soil Biol Biochem 31:1757–1763

    CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999b) Effects of mycorrhizal fungus isolate on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167–176

    CAS  Google Scholar 

  • Clarkson DT (1988) The uptake and translocation of manganese by plant roots. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic publishers, Dordrecht, pp 101–111

    Google Scholar 

  • Claudio IB, Braulio S, Pilar U, Felipe A, Marjorie RD (2008) Resistance mechanisms of Aluminum (Al3+) phytotoxicity in cereals: Physiological, genetic and molecular basis. J Soil Sci Plant Nutr 8:57–71

    Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Newroth PR (1993) Restoration and management of lakes and reservoirs. Lewis Publishers, Boca Raton, p 560

    Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig M, Borie F (2008) Glomalin related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    PubMed  CAS  Google Scholar 

  • Coughlan AP, Dalpe Y, Lapointe L, Piche Y (2000) Soil pH- induced changes in root colonization, diversity and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can J For Res 30:1543–1554

    Google Scholar 

  • Courty PE, Buée M, Diedhou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–696

    CAS  Google Scholar 

  • Cuenca G, de Andrade Z, Meneses E (2001) The presence of aluminum in arbuscular mycorrhizas of Clusia multiflora exposed to increased acidity. Plant Soil 231:233–241

    CAS  Google Scholar 

  • da Silva LHB, de Miranda JCC, de Miranda LN (1994) Effect of vesicular-arbuscular mycorrhiza in the growth of wheat varieties with differing aluminum tolerance, in cerrado soil. R Bras Ci Solo 18:407–414

    CAS  Google Scholar 

  • Daft MJ, Hacskaylo E, Nicolson TM (1975) Arbuscular mycorrhizas in plants colonizing coal spoils in Scotland and Pennsylvania. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 581–592

    Google Scholar 

  • Dálpe Y, de Souza FA, Declerck S (2005) Life cycle of Glomus species in monoxenic culture. In: Declerck S, Strullu DG, Fortin A (eds) In vitro culture of mycorrhizas, vol 4. Springer, Berlin, pp 49–71

    Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high level aluminium tolerance in barley with the ALMT1 gene. Proc National Acad Sci, USA 101:15249–15254

    CAS  Google Scholar 

  • Drabek O, Boruvka L, Mladkova L, Kocarek M (2003) Possible method of aluminium speciation in forest soils. J Inorganic Biochem 97:8–15

    CAS  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    CAS  Google Scholar 

  • Etcheverría P (2009) Glomalin in evergreen forest associations, deciduous forest and a plantation of Pseudotsuga menziesii in the X Región, Chile. Ph.D., dissertation, Universidad de La Frontera

    Google Scholar 

  • Fageria NK (2001) Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an Oxisol. Commun Soil Sci Plant Anal 32:1659–1676

    CAS  Google Scholar 

  • Fageria NK, Baligar VC, Wright RJ (1990) Iron nutrition of plants: an overview on the chemistry and physiology of its deficiency and toxicity. Pesq Agropec Bras Brasflia 25:553–570

    Google Scholar 

  • Falkengren-Grerup U (1994) Importance of soil solution chemistry to field performance of Galium odoratum and Stellaria nemorum. J Appl Ecol 31:182–192

    CAS  Google Scholar 

  • Fischer KS (1998) Toward increasing nutrient use efficiency in rice cropping systems: the next generation of technology. Field Crops Res 56:1–6

    Google Scholar 

  • Food and Agriculture Organization (FAO) (1992) Fertilizer year book, vol 41. Rome

    Google Scholar 

  • Foy CD, Flemming A, Schwartz J (1973) Opposite aluminum and manganese tolerances in two wheat varieties. Agron J 65:123–126

    CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal Al toxicity in plants. Annu Rev Plant Physiol 29:511–566

    CAS  Google Scholar 

  • Fukrei KP, Kumar A, Tyagi W, Rai M, Pattanayak A (2011) Genetic variability in yield and its components in upland rice grown in acid soils of North East India. J Rice Res 4:4–7

    Google Scholar 

  • Gao N, Su Y, Min J, Shen W, Shi W (2010) Transgenic tomato overexpressing ath-miR399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporters. Plant Soil 334:123–136

    CAS  Google Scholar 

  • Gazey C, Davies S (2009) Soil acidity-a guide for WA farmers and consultants. Dep Agric Food Bull 4784. ISSN: 1833-7236

    Google Scholar 

  • González-Guerrero M, Melville LH, Ferrol N, Lott JN, Azcon-Agular C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110

    PubMed  Google Scholar 

  • Graw D (1979) The Influence of Soil pH on the efficiency of vesicular-arbuscular mycorrhiza. New Phytol 82:687–695

    CAS  Google Scholar 

  • Green NE, Graham SO, Schenck NC (1976) The influence of pH on germination of vesicular arbuscular mycorrhizal spores. Mycologia 68:929–934

    Google Scholar 

  • Habte M, Diarra G, Scowcroft PG (2011) Post-transplant reactions of mycorrhizal and mycorrhiza-free seedlings of Leucaena leucocephala to pH changes in an Oxisol and Ultisol of Hawaii. Botany 89:275–283

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    PubMed  CAS  Google Scholar 

  • Heijne B, van Dam M, Heil GW, Bobbink R (1996) Acidification effects on vesicular-arbuscular mycorrhizal (VAM) infection, growth and nutrient uptake of established heathland herb species. Plant Soil 179:197–206

    CAS  Google Scholar 

  • Hepper CM (1984) Isolation and culture of VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, pp 95–112

    Google Scholar 

  • Higo M, Isobe K, Kong DJ, Maekawa T, Ishii R (2011) Molecular diversity and spore density of indigenous arbuscular mycorrhizal fungi in acid sulfate soil in Thailand. Ann Microbiol 61:383–389

    Google Scholar 

  • Horst WJ (1988a) Factor responsible for genotypic manganese tolerance in cowpea (Vigna unguiculata). Plant Soil 72:213–218

    Google Scholar 

  • Horst WJ (1988b) The physiology of manganese toxicity. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soil and plants. Kluwer Academic Publishers, Dordrecht, pp 175–188

    Google Scholar 

  • Hsu PH (1964) Effect of initial pH, phosphate, and silicate on the determination of Al with Aluminon. Soil Sci 96:230–238

    Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc Am J 50:28–34

    CAS  Google Scholar 

  • Hue NV, Vega S, Silva JA (2001) Manganese toxicity in a Hawaiian Oxisol affected by soil pH and organic amendments. Soil Sci Soc Am J 65:153–160

    CAS  Google Scholar 

  • Iqbal MT (2012) Acid tolerance mechanisms in soil grown plants. Malays J Soil Sci 16:1–21

    CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow in roots. New Phytol 120:509–516

    CAS  Google Scholar 

  • Kaps M, Kering M (2011) Effect of media pH on growth and leaf tissue element concentration of ‘vidal blanc’ and ‘norton’ grape cultivars. Inter J Fruit Sci 11:332–341

    Google Scholar 

  • Kelly CN, Morton JB, Cumming JR (2005) Variation in aluminum resistance among arbuscular mycorrhizal fungi. Mycorrhiza 15:193–201

    PubMed  CAS  Google Scholar 

  • Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:949–958

    Google Scholar 

  • Kinraide TB, Parker DR, Zobel RW (2005) Organic acid secretion as a mechanism of aluminum resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer. J Exp Bot 56:1853–1865

    PubMed  CAS  Google Scholar 

  • Kittiworawat S, Youpensuk S, Rerkasem B (2010) Diversity of arbuscular mycorrhizal fungi in Mimosa invisa and effect of the soil pH on the symbiosis. Chiang Mai J Sci 37:517–527

    Google Scholar 

  • Klugh K, Cumming J (2007) Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112

    PubMed  CAS  Google Scholar 

  • Klugh-Stewart K, Cumming JR (2009) Organic acid exudation by mycorrhizal Andropogon virginicus L. (broomsedge) roots in response to aluminium. Soil Biol Biochem 41:367–373

    CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Kochian L, Hoekenga O, Piñeros M (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    PubMed  CAS  Google Scholar 

  • Kochian L, Pineros M, Hoekenga O (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    CAS  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991) Effect of a vesicular arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytol 117:649–655

    CAS  Google Scholar 

  • Lambais MR, Cardoso E (1989) Effects of aluminum on germination of spores and germ tube growth of VAM fungi. Rev Bras Cienc Solo 13:151–154

    CAS  Google Scholar 

  • Lin X, Wang S, Shi Y (2001) Tolerance of VA mycorrhizal fungi to soil acidity. Pedosphere 11:105–113

    Google Scholar 

  • Lin SI, Chiang SF, Lin WY, Chen JW, Tseng CY, Wu PC, Chiou TJ (2008) Regulatory network of microRNA399 and PHO2 by systemic signalling. Plant Physiol 147:732–746

    PubMed  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RL, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhiza maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    CAS  Google Scholar 

  • Lux H, Cumming J (2001) Mycorrhizae confer aluminium resistance to tulip-poplar seedlings. Can J For Res 31:694–702

    CAS  Google Scholar 

  • Lynch JP, Brown KM (2008) Root strategies for phosphorus acquisition. In: White PJ, Hammond JP (eds) The Ecophysiology of plant–phosphorus interactions. Springer, Berlin, pp 83–96

    Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    PubMed  CAS  Google Scholar 

  • Maddox JJ, Soileau JM (1991) Effect of phosphate fertilization, lime amendments and inoculation with VA-mycorrhizal fungi on soybeans in an acid soil. Plant Soil 134:83–93

    CAS  Google Scholar 

  • Malcova R, Vosatka M, Albrechtova J (1999) Influence of arbuscular mycorrhizal fungi and simulated acid rain on the growth and coexistence of the grasses Calamagrostis villosa and Deschampsia flexuosa. Plant Soil 207:45–57

    Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, New York

    Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminium toxicity and tolerance in higher plants. Intr Rev Cytol 200:1–46

    CAS  Google Scholar 

  • Medeiros CAB, Clark RB, Ellis JR (1994) Effect of excess aluminum on mineral uptake in mycorrhizal sorghum. J Plant Nutr 17:1399–1416

    CAS  Google Scholar 

  • Miller RO, Kissel DE (2010) Comparison of Soil pH Methods on Soils of North America. Soil Sci Soci Am J 74:310–316

    CAS  Google Scholar 

  • Morton JK (1956) The chromosome numbers of the British Menthae. Watsonia 3:244–252

    Google Scholar 

  • Moutoglis P, Widden P (1996) Vesicular-arbuscular mycorrhizal spore populations in sugar maple (Acer saccharum marsh. L.) forests. Mycorrhiza 6:91–97

    Google Scholar 

  • Muthukumar T, Bagyaraj DJ (2010) Use of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Proc Natl Acad Sci India Sect B Biol Sci 80:103–121

    CAS  Google Scholar 

  • Nian H, Ahn SJ, Yang ZM, Matsumoto H (2003) Effect of phosphorus deficiency on aluminum-induced citrate exudation in soybean (Glycine max). Physiol Plantarum 117:229–236

    CAS  Google Scholar 

  • Nicolson H, Schencnk C (1979) Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71:178–186

    Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant, Cell Environ 30:1499–1512

    CAS  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2013) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    PubMed  CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2000) External mycelium production by arbuscular mycorrhizal fungi and growth of soybean fertilized with phosphorus. R Bras Ci Solo 24:329–338

    CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2003) Mycorrhizal effectiveness and manganese toxicity in soybean as affected by soil type and endophyte. Sci Agri 60:329–335

    CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN, Hampp R (2002) Manganese toxicity and callose deposition in leaves are attenuated in mycorrhizal soybean. Plant Soil 246:1–10

    CAS  Google Scholar 

  • Nogueira MA, Magelhaes GC, Cardoso EJBN (2004) Manganese toxicity in mycorrhizal and phosphorus-fertilized soybean plants. J Plant Nutr 27:141–156

    CAS  Google Scholar 

  • Nogueira MN, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284

    CAS  Google Scholar 

  • Oehl F, Sýkorová Z, Redecker D, Wiemken A, Sieverding E (2006) Acaulospora alpina, a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia 98:286–294

    PubMed  Google Scholar 

  • Overrein LN, Seip MS, Tollan A (1980) Acid precipitation effects on forest and fish. Final report of the SNSF project. Oslo, p 175

    Google Scholar 

  • Panda S, Matsumoto H (2007) Molecular physiology of aluminum toxicity and tolerance in plants. Bot Rev 73:326–347

    Google Scholar 

  • Plassard C, Fransson P (2009) Regulation of low molecular weight organic acid production in fungi. Fungal Biol Rev 23:30–39

    Google Scholar 

  • Plenchette CA, Fortin A, Forlan N (1983) Growth response of several plant species to mycorrhiza in a soil of moderate P-fertility. I. Mycorrhizae under field conditions. Plant Soil 70:199–203

    CAS  Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24:659–662

    Google Scholar 

  • Postma J, Olsson PA, Falkengren-Grerup U (2007) Colonisation of arbuscular mycorrhizal, fine and dark septate endophytic fungi in forbs of acid deciduous forests. Soil Biol Biochem 39:400–408

    CAS  Google Scholar 

  • Purcell LC, Keisling TC, Sneller CH (2002) Soybean yield and water extraction in response to deep tillage and high soil aluminum. Commun Soil Sci Plant Anal 33:3723–3735

    CAS  Google Scholar 

  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various organic compounds growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol 141:517–524

    CAS  Google Scholar 

  • Rohyadi A (2006) Elevated aluminium concentrations in soil reduce growth and function of external hyphae of Gigaspora margarita in growth of cowpea plants. Bionatura 8:47–59

    Google Scholar 

  • Rohyadi A (2008) Growth responses of external hyphae of arbuscular mycorrhizal fungi to acidic soil conditions and their effects on cowpea growth. Microbiol 2:22–26

    Google Scholar 

  • Rohyadi A, Smith FA, Murray RS, Smith SE (2004) Effects of pH on mycorrhizal colonization and nutrient uptake in cowpea under conditions that minimise confounding effects of elevated available aluminium. Plant Soil 260:283–290

    CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21

    Google Scholar 

  • Rubio R, Borie F, Schalchli C, Castillo C, Azcon R (2002) Plant growth responses in natural acidic soil as affected by arbuscular mycorrhizal inoculation and phosphorus sources. J Plant Nutr 25:1389–1405

    CAS  Google Scholar 

  • Saif SR (1987) Growth responses of tropical forage plant species to vesicular-arbuscular mycorrhizae. Plant Soil 97:25–35

    CAS  Google Scholar 

  • Sample EC, Soper RL, Rancz FJ (1980) Reactions of phosphate fertilizers in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society of Agronomy, Madison, pp 263–310

    Google Scholar 

  • Sano SM, Abbott LK, Solaiman MZ, Robson AD (2002) Influence of liming, inoculum level and inoculum placement on root colonization of subterranean clover. Mycorrhiza 12:285–290

    PubMed  CAS  Google Scholar 

  • Ščančar J, Milačič R (2006) Aluminium speciation in environmental samples: a review. Anal Bioanal Chem 386:999–1012

    PubMed  Google Scholar 

  • Schier GA, McQuattie CJ (2000) Effect of manganese on endomycorrhizal sugar maple seedlings. J Plant Nutr 23:1533–1545

    CAS  Google Scholar 

  • Seguel A, Cumming JR, Klugh-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183

    PubMed  CAS  Google Scholar 

  • Selosse MA, Rousset F (2011) The plant-fungal marketplace. Science 333:828–829

    PubMed  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutsche Gesellschaft Technische Zusammenarbeit (GTZ) GmbH, Eschborn, p 371

    Google Scholar 

  • Simon L, Kieger M, Sung SS, Smalley TJ (1994) Aluminium toxicity in tomato. Part 2. Leaf gas exchange, chlorophyll content, and invertase activity. J Plant Nutr 17:307–317

    CAS  Google Scholar 

  • Siqueira JO, Rocha WF Jr, Oliveira E, Colozzi-Filho A (1990) The Relationship between vesicular-arbuscular mycorrhiza and lime: Associated effects on the growth and nutrition of Brachiaria grass. Biol Fert Soils 10:65–71

    Google Scholar 

  • Smith FW, Rae AL, Hawkesford MJ (2000) Molecular mechanisms of phosphate and sulphate transport in plants. Biochem Biophys Acta 1465:236–245

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (eds) (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego, p 800

    Google Scholar 

  • St Clair SB, Lynch JP (2005) Base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. New Phytol 165:581–590

    PubMed  CAS  Google Scholar 

  • Sumner ME, Fey MV, Noble AD (1991) Nutrient status and toxicity problems in acid soils. In: Ulrich B, Sumner ME (eds) Soil acidity. Springer, Berlin, pp 149–182

    Google Scholar 

  • Suri VK, Choudhary AK, Chander G, Verma TS (2011) Influence of vesicular arbuscular mycorrhizal fungi and applied phosphorus on root colonization in wheat and plant nutrient dynamics in a phosphorus-deficient acid Alfisol of Western Himalayas. Commun Soil Sci Plant Anal 42:1177–1186

    CAS  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere of VA-mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    CAS  Google Scholar 

  • Tawaraya K, Naito M, Wagatsuma T (2006) Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J Plant Nutr 29:657–665

    CAS  Google Scholar 

  • Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to copper and zinc. Water Air Soil Poll 164:155–172

    CAS  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    PubMed  CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Strczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    CAS  Google Scholar 

  • Toro M, Azcón R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype mycorrhizal fungi phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    CAS  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Soc Am J 71:1257–1266

    CAS  Google Scholar 

  • Ueda T, Hosoe T, Kubo S, Nakanishi I (1992) Vesicular-arbuscular mycorrhizal fungi (Glomales) in Japan. II. A field survey of vesicular-arbuscular mycorrhizal association with medicinal plants in Japan. Trans Mycol Soc Japan 33:77–86

    Google Scholar 

  • van Aarle I, Olsson PA, Söderström B (2002) Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol 155:173–182

    Google Scholar 

  • Venterink OH (2011) Does phosphorus limitation promote species-rich plant communities? Plant Soil 345:1–9

    Google Scholar 

  • Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    PubMed  CAS  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Google Scholar 

  • Vosátka M, Batkhuugyin E, Albrechtová J (1999) Response of three arbuscular mycorrhizal fungi to simulated acid rain and aluminium stress. Biol Plant 42:289–296

    Google Scholar 

  • Walker C, Cuenca G, Sanchez F (1998) Scutellospora spinosissima sp. nov., A newly described Glomalean fungus from acidic, low nutrient plant communities in Venezuela. Ann Bot 82:721–725

    Google Scholar 

  • Wang FY, Lin XG, Yin R, Wu LH (2006) Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under sterilized conditions. Appl Soil Ecol 31:110–119

    Google Scholar 

  • Wang H, Parent S, Gosselin A, Desjardins Y (1993) Vesicular-arbuscular mycorrhizal peat-based substrates enhance symbiosis establishment and growth of three micropropagated species. J Am Soc Hort Sci 118:896–901

    Google Scholar 

  • Wasaki J, Yamamura T, Shinano T, Osaki M (2003) Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 248:129–136

    CAS  Google Scholar 

  • Xu RK, Ji GL (1998) Chemical species of aluminium ion in acid soils. Pedosphere 8:127–133

    Google Scholar 

  • Yamamoto Y, Kobayashi YY, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    PubMed  CAS  Google Scholar 

  • Yan F, Zhu YY, Müller C, Zörb C, Schubert S (2002) Adaptation of HC-pumping and plasma membrane HC-ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    PubMed  CAS  Google Scholar 

  • Yang WQ, Goulart BL (1997) Mycorrhizal infection reduces short-term aluminum uptake and increases root cation exchange capacity of highbush blueberry plants. Hort Sci 35:1083–1086

    Google Scholar 

  • Yang LT, Qi YP, Jiang HX, Chen LS (2013) Roles of organic acid anion secretion in aluminium tolerance of higher plants. BioMed Res Int. doi:10.1155/2013/173682

    Google Scholar 

  • Yano K, Takaki M (2005) Mycorrhizal alleviation of acid soil stress in the sweet potato (Ipomoea batatas). Soil Biol Biochem 37:1569–1572

    CAS  Google Scholar 

  • Yoshimura Y, Ido A, Iwase K, Matsumoto T, Yamato M (2013) Communities of arbuscular mycorrhizal fungi in the roots of Pyrus pyrifolia var. culta (Japanese Pear) in orchards with variable amounts of soil-available phosphorus. Microbes Environ 28:105–111

    PubMed  Google Scholar 

  • Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009) Arbuscular mycorrhizal colonization increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935

    CAS  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signalling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thangavelu Muthukumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muthukumar, T., Priyadharsini, P., Uma, E., Jaison, S., Pandey, R.R. (2014). Role of Arbuscular Mycorrhizal Fungi in Alleviation of Acidity Stress on Plant Growth. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9466-9_3

Download citation

Publish with us

Policies and ethics