Skip to main content

Universal Proteins As an Alternative Bacterial Vaccine Strategy

  • Chapter
New Bacterial Vaccines

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

In the last two decades, discoveries in biological sciences have allowed vaccine research to expand rapidly. Progress in the understanding of the regulatory mechanisms of the immune response to infection, molecular biology, genomics, proteomics and bioinformatics have revolutionized the way vaccines are designed. Vaccinology has established its own credibility, and it is no longer only a subject in microbiology and immunology classes but a true complex discipline. Vaccines are no longer just crude and complex preparations of killed or attenuated microorganisms but can be defined as proteins, polysaccharides (Ps), or nucleic acids that are delivered to the immune system as single entities, as part of complex particles, or by live attenuated agents or vectors, thereby inducing specific responses that inactivate, destroy, or suppress pathogens1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plotkin SA, Orenstein WA. Preface. In: Plotkin SA, Orenstein WA, eds. Vaccines. 3rd ed. Philadelphia: W B Sanders Co., 1999.

    Google Scholar 

  2. Hoiseth S. Vaccines, Bacterial. In: Lederberg J, ed. Encyclopedia of Microbiology. 2nd ed. San Diego: Academic Press, 2000:767–778

    Google Scholar 

  3. Hayrinen J, Jennings H, Raff HV et al. Antibodies to polysialic acid and its N-propyl derivative: binding properties and interaction with human embryonal brain glycopeptides. J Infect Dis 1995; 171:1481–1490.

    Article  PubMed  CAS  Google Scholar 

  4. Finne J, Bitter-Suermann D, Goridis C et al. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol 1987; 138:4402–4407.

    PubMed  CAS  Google Scholar 

  5. Martin D, Cadieux N, Hamel J et al. Highly conserved Neisseria meningitidis surface protein confers protection against experimental infection. J Exp Med 1997; 185:1173–1183.

    Article  PubMed  CAS  Google Scholar 

  6. Cadieux N, Plante M, Rioux CR et al. Bactericidal and cross-protective activities of a monoclonal antibody directed against Neisseria meningitidis NspA outer membrane protein. Infect Immun 1999; 67:4955–4959.

    PubMed  CAS  Google Scholar 

  7. Martin D, Brodeur BR, Hamel J et al. Candidate Neisseria meningitidis NspA vaccine. J Biotechnol 2000; 83:27–31.

    Article  PubMed  CAS  Google Scholar 

  8. Plante M, Cadieux N, Rioux CR et al. Antigenic and molecular conservation of the gonococcal NspA protein. Infect Immun 1991; 67:2855–2861.

    Google Scholar 

  9. Moe GR, Tan S, Granoff DM. Differences in surface expression of NspA among Neisseria meningitidis group B strains. Infect Immun 1999; 67:5664–5675.

    PubMed  CAS  Google Scholar 

  10. Moe GR, Zuno-Mitchell P, Lee SS et al. Functional activity of anti-Neisserial surface protein A monoclonal antibodies against strains of Neisseria meningitidis serogroup B. Infect Immun 2001; 69:3762–3771.

    Article  PubMed  CAS  Google Scholar 

  11. Maslanka SE, Gheesling LL, Libutti, DE. Standardization and a multilaboratory comparison of Neisseria meningitidis serogroup A and C serum bactericidal assays. Clin Diagn Lab Immunol 1997; 4:156–167.

    PubMed  CAS  Google Scholar 

  12. Jansen C, Kuipers B, van der Biezen J et al. Immunogenicity of in vitro folded outer membrane protein PorA of Neisseria meningitidis. FEMS Immunol Med Microbiol 2000; 27:227–233.

    Article  PubMed  CAS  Google Scholar 

  13. Peeters CC, Claassen IJ, Schuller M et al. Immunogenicity of various presentation forms of PorA outer membrane protein of Neisseria meningitidis in mice. Vaccine 1999; 17:2702–2712.

    Article  PubMed  CAS  Google Scholar 

  14. Niebla O, Alvarez A, Martin A et al. Immunogenicity of recombinant class 1 protein from Neisseria meningitidis refolded into phospholipid vesicles and detergent. Vaccine 2001; 19:3568–3574.

    Article  PubMed  CAS  Google Scholar 

  15. Carnemate T, Mesa C, Menéndez T et al. Recombinant Opc protein from Neisseria meningitidis reconstitued into liposomes elicits opsonic antibodies following immunization. Biotechnol Appl Biochem 2001; 34:63–69.

    Article  Google Scholar 

  16. Kasper DL, Paoletti LC, Wessels MR et al. Immune response to type III group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine. J Clin Investig 1996; 98:2308–2314.

    Article  PubMed  CAS  Google Scholar 

  17. Lachenauer CS, Kasper DL, Shimada J et al. Serotypes VI and VIII predominate among group B streptococci isolated from pregnant Japanese women. J Infect Dis 1999; 179:1030–1033.

    Article  PubMed  CAS  Google Scholar 

  18. Brodeur BR, Boyer M, Charlebois I et al. Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect Immun 2000; 68:5610–5618.

    Article  PubMed  CAS  Google Scholar 

  19. Birkeland NK. Cloning, molecular characterization, and expression of the genes encoding the lytic functions of lactococcal bacteriophage phi LC3: a dual lysis system of modular design. Can J Microbiol 1994; 40:658–665.

    Article  PubMed  CAS  Google Scholar 

  20. Gravekamp C, Kasper DL, Paoletti LC et al. Alpha C protein as a carrier for type III capsular polysaccharide and as a protective protein in group B streptococcal vaccines. Infect Immun 1999; 67:2491–2496.

    PubMed  CAS  Google Scholar 

  21. Stålhammar-Carlemalm M, Stenberg L, Lindahl G. Protein Rib: a novel group B streptococcal cell surface protein that confers protective immunity and is expressed by most strains causing invasive infections. J Exp Med 1993; 177:1593–1603.

    Article  PubMed  Google Scholar 

  22. Ferrieri P, Flores AE. Surface protein expression in group B streptococcal invasive isolates. Adv Exp Med Biol 1997; 418:635–637.

    PubMed  CAS  Google Scholar 

  23. Larsson, C, Stålhammar-Carlemalm M, Lindahl G. Experimental vaccination against group B streptococcus, an encapsulated bacterium, with highly purified preparations of cell surface proteins Rib and α. Infect Immun 1996; 64:3518–3523.

    PubMed  CAS  Google Scholar 

  24. Baker CJ, Kasper DL. Correlation fo maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. N Engl J Med 1976; 294:753–756

    Article  PubMed  CAS  Google Scholar 

  25. Baker CJ, Rench MA, Edwards MS et al. Immunization of pregnant women with a polysaccharide vaccine of group B Streptococcus. N Engl J Med 1988; 319:1180–1185.

    Article  PubMed  CAS  Google Scholar 

  26. Madoff LC, Paoletti LC, Tai JY et al. Maternal immunization of mice with group B streptococcal type III polysaccharide-beta C protein conjugate elicits protective antibody to multiple serotypes. J Clin Invest 1994; 94:286–292.

    Article  PubMed  CAS  Google Scholar 

  27. Martin D, Rioux S, Gagnon E et al. Protection from Group B streptococcal infection in neonatal mice by maternal immunization with recombinant Sip protein. Infect Immun 2002; 70:4897–4901

    Article  PubMed  CAS  Google Scholar 

  28. Hamel J, Charland N, Pineau I et al. Vaccination with newly identified pneumococcal conserved surface proteins confers protection against experimental pneumonia. Poster E-65. 2001. American Society for Microbiology 101st General Meeting, Orlando, FL.

    Google Scholar 

  29. Charland N, Martin D, Brodeur BR et al. Passive transfer of antibodies to pneumococcal BVH-3 and BVH-11 surface proteins prevented lethal experimental infection. Poster E-39. 2002. American Society for Microbiology 102nd General Meeting, Salt Lake City, UT.

    Google Scholar 

  30. Pautsch A, Schulz, GE. High-resolution structure of the OmpA membrane domain, J Mol Biol 2000; 298:273–282.

    Article  PubMed  CAS  Google Scholar 

  31. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis 1997; 18:2714–2723.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brodeur, B.R., Martin, D., Rioux, S., Charland, N., Hamel, J. (2003). Universal Proteins As an Alternative Bacterial Vaccine Strategy. In: New Bacterial Vaccines. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0053-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0053-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4902-0

  • Online ISBN: 978-1-4615-0053-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics