Skip to main content

Dysfunctional Microvascular Conducted Response in Irradiated Normal Tissue

  • Chapter
Oxygen Transport To Tissue XXIII

Abstract

Ionizing radiation is used widely to treat many conditions including cancer, arteriovenous malformations (AVM), macular degeneration, and intimai hyperplasia. Damage to the microvasculature constitutes one of the most important components of the late effects of radiation damage to many organs in clinical applications. While the effects of ionizing radiation on microvascular structure and function of normal tissue have been studied, the mechanisms by which ionizing radiation interferes with the normal microvascular control processes are not well understood. An important question is why normal microvasculature is not able to repair radiation damage as efficiently as it is able to repair other forms of damage (e.g. wounds). Understanding the mechanisms by which ionizing radiation damages the microvasculature has important clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubin P: Clinical Oncology. Philadelphia, PA, W.B. Saunders Company, 1993.

    Google Scholar 

  2. Dimitrievich GS, Fischer-Dzoga K, Griem ML: Radiosensitivity of vascular tissue. Radiat.Res. 99: 511–535, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Fajardo LF, Berthrong M: Vascular lesions following radiation. Pathol.Annu. 23: 297–230, 1988.

    PubMed  Google Scholar 

  4. Segal SS: Cell-to-cell communication coordinates blood flow control. Hypertension 23(2): 1113–1120, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Rivers RJ: Remote effects of pressure changes in arterioles. Am.J.Physiol. 268: H1379–H1382, 1995.

    PubMed  CAS  Google Scholar 

  6. Segal SS, Damon DN, Duling BR: Propagation of vasomotor responses coordinates arteriolar resistances. Am.J.Physiol. 256: H832–H837, 1989.

    PubMed  CAS  Google Scholar 

  7. Roth NM, Sontag MR, Kiani MF: Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat.Res. 151: 270–277, 1999.

    Article  PubMed  CAS  Google Scholar 

  8. MacNaughton WK, Aurora AR, Bhamra J, Sharkey KA, Miller MI: Expression, activity and cellular localization of inducible nitric oxide synthase in rat ileum and colon post-irradiation. Int.J.Radiat.Biol. 74: 255–264,1998.

    Article  PubMed  CAS  Google Scholar 

  9. Tyml K, Yu J, McCormack DG: Capillary and arteriolar responses to local vasodilators are impaired in a rat model of sepsis. J.Appl.Physiol. 84: 837–844, 1998.

    PubMed  CAS  Google Scholar 

  10. Hollenberg SM, Cunnion RE, Zimmerberg J: Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am.J.Physiol. 264: H660–H663, 1993.

    PubMed  CAS  Google Scholar 

  11. Scott JA, Machoun M, McCormack DG: Inducible nitric oxide synthase and vascular reactivity in rat thoracic aorta: effect of aminoguanidine. J.Appl.Physiol. 80: 271–277, 1996.

    Article  PubMed  CAS  Google Scholar 

  12. Kessler P, Bauersachs J, Busse R, Schini-Kerth VB: Inhibition of inducible nitric oxide synthase restores endothelium-dependent relaxations in proinflammatory mediator-induced blood vessels. Arterioscler.Thromb.Vasc.Biol. 17: 1746–1755, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Bassenge E: Endothelial function in different organs. Prog.Cardiovasc.Dis. 39: 209–228, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Roth NM, Kiani MF: A “Geographic Information Systems” based technique for the study of microvascular networks. Ann.Biomed.Eng. 27: 42–47, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Bird RB, Stewart WE, Lightfoot EN: Concentration Distributions in Solids and in Laminar Flow (Transport Phenomena, Bird, Stewart, Lightfoot, eds). New York, John Wiley & Sons, pp519–553, 1960.

    Google Scholar 

  16. Hudetz AG, Kiani MF: The role of wall shear stress in microvascular network adaptation.Adv.Exp.Med.Biol. 316: 31–39, 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Kiani, M. F. Mathematical modeling of microvascular growth and adaptation. Ph.D. Dissertation, Louisiana Tech University, Ruston, LA, 1990.

    Google Scholar 

  18. Bourlier V, Diserbo M, Joyeux M, Ribuot C, Multon E, Gourmelon P, Verdetti J: Early effects of acute gamma-radiation on vascular arterial tone. Br.J.Pharmacol. 123: 1168–1172, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Segal SS, Duling BR: Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling? Am.J.Physiol. 256: H838–H845, 1989.

    PubMed  CAS  Google Scholar 

  20. Welsh DG, Segal SS: Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am.J.Physiol. 274: H178–H186, 1998.

    PubMed  CAS  Google Scholar 

  21. Xia J, Little TL, Duling BR: Cellular pathways of the conducted electrical response in arterioles of hamster cheek pouch in vitro. Am.J.Physiol. 269: H203I-H2038, 1995.

    Google Scholar 

  22. Dietrich HH: Effect of locally applied epinephrine and norepinephrine on blood flow and diameter in capillaries of rat mesentery. Microvasc.Res. 38: 125–135, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Dietrich HH, Tyml K: Capillary as a communicating medium in the microvasculature. Microvasc.Res. 43: 87–99, 1992.

    Article  PubMed  CAS  Google Scholar 

  24. Trosko JE, Chang CC, Madhukar BV: Modulation of intercellular communication during radiation and chemical carcinogenesis. Radiat.Res. 123: 241–251, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gaber, M.W., Naimark, M.D., Kiani, M.F. (2003). Dysfunctional Microvascular Conducted Response in Irradiated Normal Tissue. In: Wilson, D.F., Evans, S.M., Biaglow, J., Pastuszko, A. (eds) Oxygen Transport To Tissue XXIII. Advances in Experimental Medicine and Biology, vol 510. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0205-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0205-0_65

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4964-8

  • Online ISBN: 978-1-4615-0205-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics