Skip to main content

ADP-Ribosylation and CD38 Signaling

  • Chapter
Cyclic ADP-Ribose and NAADP

Abstract

Mono-ADP-ribosylation is a posttranslational protein modification reaction that was originally discovered as a mechanism by which bacterial toxins interfere with signal transduction in human host cells [1, 2]. Mono-ADP-ribosylation is also used as a mechanism to regulate endogenous metabolism, as clearly demonstrated in photosynthetic bacteria [3]. Mammalian endogenous mono-ADP-ribosylation has also been studied and the responsible enzymes have been purified and defined at the molecular level [4–9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ueda K. and Hayaishi O. 1985. ADP-ribosylation. Annu. Rev. Biochem. 54: 73–100.

    Article  PubMed  CAS  Google Scholar 

  2. Wreggett KA. 1986. Bacterial toxins and the role of ADP-ribosylation. J. Recept. Res. 6: 95–126.

    PubMed  CAS  Google Scholar 

  3. Ludden PW. 1994. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol. Cell. Biochem. 138: 123–129.

    Article  PubMed  CAS  Google Scholar 

  4. Yost DA and Moss J. 1983. Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J. Biol. Chem. 258: 4926–4929.

    PubMed  CAS  Google Scholar 

  5. Godeau F, Belin D, and Koide SS. 1984. Mono(adenosine diphosphate ribosyl) transferase in Xenopus tissues. Direct demonstration by a zymographic localization in sodium dodecyl sulfate-polyacrylamide gels. Anal. Biochem. 137: 287–296.

    Article  PubMed  CAS  Google Scholar 

  6. Peterson JE, Larew JS and Graves DJ. 1990. Purification and partial characterization of arginine-specirlc ADP- ribosyltransferase from skeletal muscle microsomal membranes. J. Biol. Chem. 265: 17062–17069.

    PubMed  CAS  Google Scholar 

  7. Maehama T, Takahashi K, Ohoka Y, Ohtsuka T, Ui M and Katada T. 1991. Identification of a botulinum C3-like enzyme in bovine brain that catalyzes ADP-ribosylation of GTP-binding proteins. J. Biol. Chem. 266: 10062–10065.

    PubMed  CAS  Google Scholar 

  8. Zolkiewska A, Nightingale MS and Moss J. 1992. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 89: 11352–11356.

    Article  PubMed  CAS  Google Scholar 

  9. Tsuchiya M, Hara N, Yamada K, Osago H and Shimoyama M. 1994. Cloning and expression of cDNA for arginine-specific ADP- ribosyltransferase from chicken bone marrow cells. J. Biol. Chem. 269: 27451–27457.

    PubMed  Google Scholar 

  10. Wang J, Nemoto E, Kots AY, Kaslow HR and Dennert G. 1994. Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI-anchored/arginine ADP-ribosyltransferase. J. Immunol. 153: 4048–4058.

    PubMed  CAS  Google Scholar 

  11. Greiner DL, Mordes JP, Handler ES, Angelillo M, Nakamura N and Rossini AA. 1987. Depletion of RT6.T T lymphocytes induces diabetes in resistant biobreeding/Worcester (BB/W) rats. J. Exp. Med. 166: 461–475.

    Article  PubMed  CAS  Google Scholar 

  12. Mehta K and Malavasi F. 2000. Human CD38 and related molecules, Chem. Immunol. 75, Karger, Basel, Switzerland.

    Google Scholar 

  13. Kim H. Jacobson EL and Jacobson MK. 1993. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261. 1330–1333.

    Article  PubMed  CAS  Google Scholar 

  14. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF and Lee HC. 1993. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  15. Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, Malavasi F, Lee HC and De Flora A. 1993. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase. ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem. Biophys. Res. Commun. 196: 1459–1465.

    Article  PubMed  CAS  Google Scholar 

  16. Lee HC. 1997. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 11: 1133–1164.

    Google Scholar 

  17. Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R and Chua NH. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126–2130.

    Article  PubMed  CAS  Google Scholar 

  18. Takasawa S. Nata K. Yonekura H and Okamoto H. 1993. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science 259: 370–373.

    Article  PubMed  CAS  Google Scholar 

  19. Liberman 1957. The mechanism of the specific depression of an enzyme activity in cells in tissue culture. J. Biol. Chem. 225: 883–898.

    Google Scholar 

  20. Green S and Dobrjansky A. 1971. pH-dependent inactivation of nicotinamide-adenine dinucleotide glycohydrolase by its substrate, oxidized nicotinamide-adenine dinucleotide. Biochemistry 10: 2496–2500.

    Article  PubMed  CAS  Google Scholar 

  21. Han MK, Lee JY, Cho YS, Song YM, An NH, Kim HR and Kim UH. 1996. Regulation of NAD+ glycohydrolase activity by NAD+-dependent auto-ADP- ribosylation. Biochem. J. 318:903–908.

    PubMed  CAS  Google Scholar 

  22. Han MK, Cho YS, Kim YS, Yim CY and Kim UH. 2000. Interaction of two classes of ADP-ribose transfer reactions in immune signaling. J. Biol. Chem. 275: 20799–20805.

    Article  PubMed  CAS  Google Scholar 

  23. Franco L. Guida L, Bruzzone S. Zocchi E, Usai C and De Flora A. 1998. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. FASEB J. 12: 1507–1520.

    PubMed  CAS  Google Scholar 

  24. Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A and De Flora A. 2001. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J. Biol. Chem. 276: 21642–21648.

    PubMed  CAS  Google Scholar 

  25. Han MK, Kim SJ, Park YR, Shin YM, Park HJ, Park KJ, Park KH, Kim HK, Jang SI, An NH and Kim UH. 2002. Antidiabetic Effect of a Prodrug of Cysteine, L-2-Oxothiazolidine-4- carboxylic Acid, through CD38 Dimerization and Internalization. J. Biol. Chem. 277:5315–5321.

    Article  PubMed  CAS  Google Scholar 

  26. Bruzzone S, Guida L, Zocchi E, Franco L and De Flora A. 2001. Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. FASEB J. 15: 10–12.

    PubMed  CAS  Google Scholar 

  27. Kim UH, Kim MK, Kim JS, Han MK, Park BH and Kim HR. 1993. Purification and characterization of NAD glycohydrolase from rabbit erythrocytes. Arch. Biochem. Biophys. 305: 147–152.

    Article  PubMed  CAS  Google Scholar 

  28. Santos-Argumedo L, Teixeira C, Preece G, Kirkham PA and Parkhouse RM. 1993. A B lymphocyte surface molecule mediating activation and protection from apoptosis via calcium channels. J. Immunol. 151:3119–3130.

    PubMed  CAS  Google Scholar 

  29. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA. Schulze-Koops H, Potter BV and Mayr GW. 1999. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398: 70–73.

    Google Scholar 

  30. An NH, Han MK, Urn C, Park BH, Park BJ, Kim HK and Kim UH. 2001. Significance of ecto-cyclase activity of CD38 in insulin secretion of mouse pancreatic islet cells. Biochem. Biophys. Res. Commun. 282: 781–786.

    Article  PubMed  CAS  Google Scholar 

  31. Ikehata F, Satoh J, Nata K, Tohgo A, Nakazawa T, Kato I, Kobayashi S, Akiyama T, Takasawa S, Toyota T and Okamoto H. 1998. Autoantibodies against CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) that impair glucose-induced insulin secretion in noninsulin- dependent diabetes patients. J. Clin. Invest. 102: 395–401.

    Article  PubMed  CAS  Google Scholar 

  32. Yagui K, Shimada F, Mimura M, Hashimoto N, Suzuki Y, Tokuyama Y, Nata K, Tohgo A, Ikehata F, Takasawa S, Okamoto H, Makino H, Saito Y and Kanatsuka A. 1998. A missense mutation in the CD38 gene, a novel factor for insulin secretion: association with Type II diabetes mellitus in Japanese subjects and evidence of abnormal function when expressed in vitro. Diabetologia 41: 1024–1028.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, UH., Han, MK., Yim, CY. (2002). ADP-Ribosylation and CD38 Signaling. In: Lee, H.C. (eds) Cyclic ADP-Ribose and NAADP. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0269-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0269-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4996-9

  • Online ISBN: 978-1-4615-0269-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics