Skip to main content

In-Situ Field Emission of Carbon Nanotubes

  • Chapter
Electron Microscopy of Nanotubes

Abstract

Carbon nanotubes possess various superior properties for use as field emitters, such as sharp tips with a nanometer-scale radius of curvature [1], high mechanical stiffness [24], high chemical stability [5], and unique electrical properties [6, 7]. Due to the unique tip geometry of the carbon nanotubes, their field emission property is one of the most attractive application [8], which has been extensively studied using the classical technique. In this chapter, we introduce a few novel applications of TEM in characterizing the field emission properties of carbon nanotubes, with a focus on the characteristics of individual carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima and T. Ichihashi, Nature 363 (1993) 603.

    Article  Google Scholar 

  2. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381 (1996) 678.

    Article  Google Scholar 

  3. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277 (1997) 1971.

    Article  Google Scholar 

  4. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283 (1999) 1513.

    Article  Google Scholar 

  5. T. W Ebbesen, P. M. Ajayanj, H. Hiura, and K. Tanigaki, Nature 367 (1994) 519.

    Article  Google Scholar 

  6. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature 382 (1996) 54.

    Article  Google Scholar 

  7. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280 (1998) 1744.

    Article  Google Scholar 

  8. W. A. de Heer, A. Chatelain, and D. Ugarte, Science 270 (1995) 1179.

    Article  Google Scholar 

  9. R. H. Fowler and L. Nordheim, Proc. of Roy. Soc. London A 119 (1928) 173.

    Article  Google Scholar 

  10. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science 274 (1996) 1701.

    Article  Google Scholar 

  11. S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, Science 283 (1999) 512.

    Article  Google Scholar 

  12. Z. W. Pan, S. S. Xie, B. H. Chang, C. Y. Wang, L. Lu, W. Liu, W. Y Zhou, W. Z. Li, and L. X. Qian, Nature 394 (1998) 631.

    Article  Google Scholar 

  13. Z. W. Pan, F. C. K. Au, H. L. Lai, W. Y. Zhou, L. F. Sun, Z. Q. Liu, D. S. Tang, C. S. Lee, S. T. Lee, and S. S. Xie, J. Phys. Chem. B 105 (2001) 1519.

    Article  Google Scholar 

  14. J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. de Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett. 73 (1998) 918.

    Article  Google Scholar 

  15. W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin, Appl. Phys. Lett. 75 (1999) 873.

    Article  Google Scholar 

  16. W. A. de Heer, J. M. Bonard, K. Fauth, A. Chatelain, L. Forro, and D. Ugarte, Adv. Mater. 9 (1997) 87.

    Article  Google Scholar 

  17. J. M. Bonard, J. P. Salvetat, T. Stockli, L. Forro, and A. Chatelain, Appl. Phys. A 69 (1999) 245.

    Article  Google Scholar 

  18. X. P. Xu and G. R. Brandes, Appl. Phys. Lett. 74 (1999) 2549.

    Article  Google Scholar 

  19. W. Zhu, G. Kochanski, S. Jin, and L. Seibles, J. Appl. Phys. 78 (1995) 2707.

    Article  Google Scholar 

  20. M. W. Geis, J. C. Twichell, J. Macaulay, and K. Okano, Appl. Phys. Lett. 67 (1995) 1328.

    Article  Google Scholar 

  21. A. Wisitsora-at, W. P. Kang, J. L. Davidson, and D. V. Kerns, Appl. Phys. Lett. 71 (1997) 3394.

    Google Scholar 

  22. K. Okano, S. Koizumi, S. R. P. Silva, and G. A. J. Amaratunga, Nature 381 (1996) 140.

    Article  Google Scholar 

  23. W. Zhu, G. P. Kochanski, and S. Jin, Science 282 (1998) 1471.

    Article  Google Scholar 

  24. R. P. Gao, Z. W. Pan, and Z. L. Wang, Appl. Phys. Lett. 78 (2001) 1757.

    Article  Google Scholar 

  25. Z. L. Wang, Adv. Mater. 12 (2000) 1295.

    Article  Google Scholar 

  26. D. Gabor, Proc. Roy. Soc. London A 197 (1949) 454.

    Article  Google Scholar 

  27. G. Mollenstedt, Adv. Optical and Electrons 12 (1991) 1.

    Google Scholar 

  28. A. Tonomura, Microsc. Soc. America Bulletin 24 (1994) 501.

    Google Scholar 

  29. H. Lichte, Adv. Optical and Electron Microsc. 12 (1991) 25.

    Google Scholar 

  30. B. G. Frost, L. F. Allard, E. Volkl, and D. C. Joy, in Electron Holography, A. Tonomura, L. F. Allard, G. Pozzi, D. C. Joy and Y A. Ono (Eds.) (Dordrecht: Elsevier Science, 1995), p. 169.

    Google Scholar 

  31. J. Cumming, A. Zettl, M. R. McCartney, and J. C. H. Spence, Phys. Rev. Lett. 88 (2002) 56804–1.

    Article  Google Scholar 

  32. Z. L. Wang, R. P. Gao, W. A. de Heer, and P. Poncharal, Appl. Phys. Lett. 80 (2002) 856.

    Article  Google Scholar 

  33. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Science 269 (1995) 1550.

    Article  Google Scholar 

  34. J. Cumings, P. G. Collins, and A. Zettle, Nature 406 (2000) 586.

    Article  Google Scholar 

  35. P. G. Collins and P. Avouris, Nanoletters 1 (2001) 453.

    Article  Google Scholar 

  36. Y. H. Gao and Y. Bando, Nature 415 (2002) 599.

    Article  Google Scholar 

  37. J. Cumings and A. Zettl, Science 289, (2000) 602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Pulishers

About this chapter

Cite this chapter

Wang, Z.L. (2003). In-Situ Field Emission of Carbon Nanotubes. In: Wang, Z.L., Hui, C. (eds) Electron Microscopy of Nanotubes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0315-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0315-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-0314-9

  • Online ISBN: 978-1-4615-0315-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics