Skip to main content

Abstract

Fourier transform infrared (FT-IR) spectroscopy is a rapid, reagent-less, non-destructive, analytical technique whose continuing development is resulting in manifold applications in the biosciences. The principle of FT-IR lies in the fact that when a sample is interrogated with light (or electromagnetic radiation), chemical bonds absorb at specific wavelengths and vibrate in one of a number of ways. These absorptions/vibrations can then be correlated to the bonds or functional groups of molecules. Because of its chemical information content and spectral richness (defined as numbers of clearly defined peaks) the major wavenumber region of interest is the mid-infrared, usually defined as 4000–600 cm-1 (see Table 1). The infrared spectra of proteins, as a prominent example, exhibit strong amide I absorption bands at 1653 cm-1 associated with characteristic stretching of C=O and C-N and bending of the N-H bond (Stuart, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bendele A, McComb J, Gould T et al. Animal models of arthritis: relevance to human disease. Toxicol Pathol 27: 134–142 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Benedetti E, Bramanti E, Papineschi F, Rossi I. Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy. Appl Spectr 51: 792–797 (1997).

    Article  CAS  Google Scholar 

  • Benedetti E, Bramanti E, Papineschi F, Vergamini P. An approach to the study of primitive thrombocythemia (PT) megakaryocytes by means of Fourier transform infrared microspectroscopy (FT-IR-M). Cell Mol Biol 44: 129–139 (1998).

    PubMed  CAS  Google Scholar 

  • Boydston-White S, Gopen T, Houser S et al. Infrared spectroscopy of human tissue. V. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle. Biospectroscopy 5: 219–227 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Chiriboga L, Xie P, Yee H et al. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. Biospectroscopy 4: 47–53 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Chiriboga L, Xie P, Yee H et al. Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy. Cell Mol Biol 44: 219–229 (1998b).

    PubMed  CAS  Google Scholar 

  • Cousens S, Smith PG, Ward H et al. Geographical distribution of variant Creutzfeldt-Jakob disease in Great Britain, 1994–2000. Lancet 357: 1002–1007 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Damyanovitch AZ, Staples JR, Marshall KW. 1H NMR investigation of changes in the metabolic profile of synovial fluid in bilateral canine osteoarthritis with unilateral joint denervation. Osteoarthritis Cartilage 7: 165–172 (1999).

    Article  Google Scholar 

  • Diem M, Boydston-White S, Chiriboga L. Infrared spectroscopy of cells and tissues: shining light onto a novel subject. Appl Spectr 53: 148A–161A (1999).

    Article  CAS  Google Scholar 

  • Diem M, Chiriboga L, Lasch P, Pacifico A. IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers 67: 349–353 (2002).

    Article  PubMed  Google Scholar 

  • Ellis DI, Broadhurst D, Kell DB et al. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl Environ Microbiol 68: 2822–2828 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Eysel HH, Jackson M, Nikulin A et al. A novel diagnostic test for arthritis: multivariate analysis of infrared spectra of synovial fluid. Biospectroscopy 3: 161–167 (1997).

    Article  CAS  Google Scholar 

  • Fox S. WHO to convene on worldwide risk of BSE and vCJD. Infect Med 18: 69–69 (2001).

    Google Scholar 

  • Goodacre R, Timmins EM, Burton R et al. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144: 1157–1170 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R, Timmins EM, Rooney PJ et al. Rapid identification of Streptococcus and Enterococcus species using diffuse reflectance-absorbance Fourier transform infrared spectroscopy and artificial neural networks. FEMS Microbiol Lett 140: 233–239 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Haaland DM, Jones HDT, Thomas EV. Multivariate classification of the infrared spectra of cell and tissue samples. Appl Spectr 55: 340–345 (1997).

    Article  Google Scholar 

  • Heise HM, Voigt G, Lampen P et al. Multivariate calibration for the determination of analytes in urine using mid-infrared attenuated total reflection spectroscopy. Appl Spectr 55: 434–443 (2001).

    Article  CAS  Google Scholar 

  • Helm D, Labischinski H, Schallehn G, Naumann D. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137: 69–79 (1990).

    Google Scholar 

  • Kirschner C, Maquelin K, Pina P et al. Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol 39: 1763–1770 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kneipp J, Beekes M, Lasch P, Naumann D. Molecular changes of preclinical scrapie can be detected by infrared spectroscopy. J Neurosci 22: 2989–2997 (2002).

    PubMed  CAS  Google Scholar 

  • Kneipp J, Lasch P, Baldauf E et al. Detection of pathological molecular alterations in scrapie-infected hamster brain by Fourier transform infrared (FT-IR) spectroscopy. Biochim Biophys Acta-Mol Basis Dis 1501: 189–199 (2000).

    Article  CAS  Google Scholar 

  • Lafrance D, Lands LC, Hornby L, Burns DH. Near-infrared spectroscopic measurement of lactate in human plasma. Appl Spectr 54: 300–304 (2000).

    Article  CAS  Google Scholar 

  • Lang PL, Sang SC. The in situ infrared microspectroscopy of bacterial colonies on agar plates. Cell Mol Biol 44: 231–238 (1998).

    PubMed  CAS  Google Scholar 

  • Lasch P, Haensch W, Lewis EN et al. Characterization of colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. Appl Spectr 56: 1–9 (2002).

    Article  CAS  Google Scholar 

  • Lasch P, Naumann D. FT-IR microspectroscopic imaging of human carcinoma thin sections based on pattern recognition techniques. Cell Mol Biol 44: 189–202 (1998).

    PubMed  CAS  Google Scholar 

  • Liu KZ, Jia L, Kelsey SM et al. Quantitative determination of apoptosis on leukemia cells by infrared spectroscopy. Apoptosis 6: 269–278 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Liu KZ, Mantsch HH. Apoptosis-induced structural changes in leukemia cells identified by IR spectroscopy. J Mol Struct 565: 299–304 (2001).

    Article  Google Scholar 

  • Liu KZ, Schultz CP, Mohammad RM et al. Similarities between the sensitivity to 2-chlorodeoxyadenosine of lymphocytes from CLL patients and bryostatin 1 treated WSU-CLL cells: an infrared spectroscopic study. Cancer Lett 127: 185–193 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Markus A, Swinkels DW, Jakobs BS et al. New technique for diagnosis and monitoring of alcaptonuria: quantification of homogentisic acid in urine with mid-infrared spectrometry. Anal Chim Acta 429: 287–292 (2001).

    Article  CAS  Google Scholar 

  • Nakamura T, Takeuchi T, Terada A et al. Near-infrared spectrometry analysis of fat, neutral sterols, bile acids, and short-chain fatty acids in the feces of patients with pancreatic maldigestion and malabsorption. Int J Pancreatol 23: 137–143 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Naumann D. FT-infrared and FT-Raman spectroscopy in biomedical research. Appl Spectr Rev 36: 239–298 (2001).

    Article  CAS  Google Scholar 

  • Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy. Nature 351: 81–82 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Naumann D, Keller S, Helm D et al. Ft-Ir Spectroscopy and Ft-Raman spectroscopy are powerful analytical tools for the noninvasive characterization of intact microbial-cells. J Mol Struct 347: 399–405 (1995).

    Article  CAS  Google Scholar 

  • Otterness IG, Swindell AC, Zimmerer RO et al. An analysis of 14 molecular markers for monitoring osteoarthritis: segregation of the markers into clusters and distinguishing osteoarthritis at baseline. Osteoarthritis Cartilage 8: 180–185 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Otterness IG, Weiner E, Swindell AC et al. An analysis of 14 molecular markers for monitoring osteoarthritis: relationship of the markers to clinical end- points. Osteoarthritis Cartilage 9: 224–231 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Perromat A, Melin AM, Deleris G. Pharmacologic application of Fourier transform infrared spectroscopy: the in vivo toxic effect of carrageenan. Appl Spectr 55: 1166–1172 (2001).

    Article  CAS  Google Scholar 

  • Petibois C, Cazorla G, Deleris G. Triglycerides and glycerol concentration determinations using plasma FT-IR spectra. Appl Spectr 56: 10–16 (2002).

    Article  CAS  Google Scholar 

  • Petibois C, Deleris G, Cazorla G. Perspectives in the utilisation of Fourier-transform infrared spectroscopy of serum in sports medicine — health monitoring of athletes and prevention of doping. Sports Med 29: 387–396 (2000a).

    Article  PubMed  CAS  Google Scholar 

  • Petibois C, Melin AM, Perromat A et al. Glucose and lactate concentration determination on single microsamples by Fourier-transform infrared spectroscopy. J Lab Clin Med 135: 210–215 (2000b).

    Article  PubMed  CAS  Google Scholar 

  • Petrich W. Mid-infrared and Raman spectroscopy for medical diagnostics. Appl Spectr Rev 36: 181–237 (2001).

    Article  CAS  Google Scholar 

  • Petrich W, Dolenko B, Fruh J et al. Disease pattern recognition in infrared spectra of human sera with diabetes mellitus as an example. Appl Optics 39: 3372–3379 (2000).

    Article  CAS  Google Scholar 

  • Petrich W, Staib A, Otto M, Somorjai RL. Correlation between the state of health of blood donors and the corresponding mid-infrared spectra of the serum. Vibrat Spectr 28: 117–129 (2002).

    Article  CAS  Google Scholar 

  • Rempel SP, Manisch HH. Biomedical applications of near-infrared spectroscopy: a review. Can J Anal Sci Spectr 44: 171–179 (1999).

    CAS  Google Scholar 

  • Schmitt J, Flemming HC. FTIR-spectroscopy in microbial and material analysis. Internat Biodeterior Biodegrad 41: 1–11 (1998).

    Article  CAS  Google Scholar 

  • Schultz CP, Liu KZ, Johnston JB, Mantsch HH. Study of chronic lymphocytic leukemia cells by FT-IR spectroscopy and cluster analysis. Leukemia Res 20: 649–655 (1996).

    Article  CAS  Google Scholar 

  • Schultz CP, Liu KZ, Johnston JB, Mantsch HH. Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes. J Mol Struct 408: 253–256 (1997).

    Article  Google Scholar 

  • Shaw RA, Kotowich S, Leroux M, Mantsch HH. Multianalyte serum analysis using mid-infrared spectroscopy. Ann Clin Biochem 35: 624–632 (1998).

    PubMed  CAS  Google Scholar 

  • Shaw RA, Mantsch HH. Vibrational biospectroscopy: from plants to animals to humans. A historical perspective. J Mol Struct 481: 1–13 (1999).

    Article  Google Scholar 

  • Shaw RA, Mantsch HH. Multianalyte serum assays from mid-IR spectra of dry films on glass slides. Appl Spectr 54: 885–889 (2000).

    Article  CAS  Google Scholar 

  • Staib A, Dolenko B, Fink DJ et al. Disease pattern recognition testing for rheumatoid arthritis using infrared spectra of human serum. Clin Chim Acta 308: 79–89 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Stuart B. Biological Applications of Infrared Spectroscopy. John Wiley and Sons, Chichester (1997).

    Google Scholar 

  • Thomas N, Goodacre R, Timmins EM et al. Fourier transform infrared spectroscopy of follicular fluids from large and small antral follicles. Hum Reprod 15: 1667–1671 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Timmins EM, Howell SA, Alsberg BK et al. Rapid differentiation of closely related Candida species and strains by pyrolysis mass spectrometry and Fourier transform- infrared spectroscopy. J Clin Microbiol 36: 367–374 (1998).

    PubMed  CAS  Google Scholar 

  • Udelhoven T, Naumann D, Schmitt J. Development of a hierarchical classification system with artificial neural networks and FT-IR spectra for the identification of bacteria. Appl Spectr 54: 1471–1479 (2000).

    Article  CAS  Google Scholar 

  • Utzinger U, Heintzelman DL, Mahadevan-Jansen A et al. Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Appl Spectr 55: 955–959 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ellis, D.I., Harrigan, G.G., Goodacre, R. (2003). Metabolic Fingerprinting with Fourier Transform Infrared Spectroscopy. In: Harrigan, G.G., Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0333-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0333-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5025-5

  • Online ISBN: 978-1-4615-0333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics