Skip to main content

The Application of Chlorophyll Fluorescence to Study Light, Temperature, and Drought Stress

  • Chapter
Practical Applications of Chlorophyll Fluorescence in Plant Biology

Abstract

Chlorophyll a fluorescence was studied for many years in specialized laboratories by biophysicists and molecular plant physiologists to obtain a mechanistic understanding of the functioning of the photosynthetic apparatus. In the last 15 years, however, this technique has been increasingly used by other plant scientists, in particular by plant physiologists for investigating stress responses. One reason for this has been the development of user-friendly instruments, enabling the recording of the chlorophyll fluorescence of intact leaves in their natural environment. Another reason was the development of mathematical models and parameters to interpret the results for scientists, who are not experts in photobiology or biophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.M., Y.I. Park, and W.S. Chow. 1997. Photoinactivation and photoprotection of photosystem II in nature. Physiol. Plant. 100:214–223.

    Article  CAS  Google Scholar 

  • Aro, E.M., S. McCaffery, and J.M..Anderson.1993. Photoinhibition and Dlprotein degradation in peas acclimated to different growth irradiances. Plant Physiol. 103:835–843.

    PubMed  CAS  Google Scholar 

  • Asada, K. 1994. Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress, p. 129–142. In: N.R. Baker and J.R. Bowyer (eds.), Photoinhibition of Photosynthesis, from Molecular Mechanisms to the Field. BIOS Scientific Publishers, Oxford.

    Google Scholar 

  • Bilger, W., and O. Björkman. 1991. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva pariflora L. Planta 184:226–234.

    Article  CAS  Google Scholar 

  • Bilger, W., and U. Schreiber. 1986. Energy-dependant quenching of dark level chlorophyll fluorescence in intact leaves. Photosyn. Res. 10:303–308.

    Article  CAS  Google Scholar 

  • Björkman, O., and B. Demmig.1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489–504.

    Article  Google Scholar 

  • Bukhov, N.G., P. Mohnaty, M.G. Rakhimberdieva, and N.V. Karapetyan. 1992. Analysis of dark-relaxation kinetics of variable fluorescence in intact leaves. Planta 187:122–127.

    Article  CAS  Google Scholar 

  • Chow, W.S., A. Melis, and J.M..Anderson. 1990. Adjustment of photosystem stoichiometry in chloroplasts improves the quantum efficiency of photosynthesis. Proc. Natl. Acad. Sci. USA 87:7502–7506.

    Article  PubMed  CAS  Google Scholar 

  • Chow, W.S., C.B. Osmond, and L.K. Huang. 1989. Photosystem II function and herbicide binding sites during photoinhibition of spinach chloroplasts in-vivo and in-vitro. Photosyn. Res. 21:17–26.

    CAS  Google Scholar 

  • Cornic, G., and A. Massacci. 1996. Leaf photosynthesis under drought stress, p. 347–366. In: N.R. Baker (ed.), Advances in Photosynthesis, Volume 5: Photosynthesis and the Environment. Springer Science+Business Media New York, London.

    Google Scholar 

  • Cornic, G., and J-M. Briantais. 1991. Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183:178–184.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B.1990. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020:1–24.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol. 39:474–482.

    Article  CAS  Google Scholar 

  • Edwards, G.E., and N.R. Baker. 1993. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosyn. Res. 37:89–92.

    Article  CAS  Google Scholar 

  • Fracheboud, Y., P. Haldimann, J. Leipner, and P. Stamp. 1999. Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J. Expt. Bot. 50:1533–1540.

    CAS  Google Scholar 

  • Fryer, M.J., J.R. Andrews, K. Oxborough, D.A. Blowers, and N.R. Baker. 1998. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in. leaves of maize in the field during periods of low temperature. Plant Physiol. 116:571–580.

    Article  PubMed  CAS  Google Scholar 

  • Genty, B., J-M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87–92.

    Article  CAS  Google Scholar 

  • Gilmore, A.M., and O. Björkman. 1995. Temperature-sensitive coupling and uncoupling of ATPase-mediated, nonradiative energy dissipation: Similarities between chloroplasts and leaves. Planta 197:646–654.

    Article  CAS  Google Scholar 

  • Greer, D.H., and E.A. Halligan. 2001. Photosynthetic and fluorescence light responses for kiwifruit (Actinida deliciosa) leaves at different stages of development on vines grown at two different photon flux densities. Austral. J. Plant Physiol. 28:373–382.

    CAS  Google Scholar 

  • Haldimann, P., Y. Fracheboud, and P. Stamp.1996. Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature. Plant Cell Environ. 19:85–92.

    Article  CAS  Google Scholar 

  • Haldimann, P. 1997. Chilling-induced changes to carotenoid composition, photosynthesis and maximum quantum yield of photosystem II photochemistry in two maize genotypes differing in tolerance to low temperature. J. Plant Physiol. 151:610–619.

    Article  CAS  Google Scholar 

  • Haupt-Herting, S., and H.P. Fock. 2000. Exchange of oxygen and its role in energy dissipation during drought stress in tomato plants. Physiol. Plant. 110:489–495.

    Article  CAS  Google Scholar 

  • Havaux, M., R.J. Strasser, and H.Greppin. 1991. A theoretical and experimental analysis of qP and qN coefficients of chlorophyllfluorescence quenching and their relationto photochemical and nonphotochemical events. Photosyn. Res. 27:41–55.

    Article  CAS  Google Scholar 

  • Havaux, M. 1993a. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16:461–467.

    Article  Google Scholar 

  • Havaux, M.1993b. Characterisation of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci. 94:19–33.

    Article  CAS  Google Scholar 

  • Havaux, M., and F. Tardy. 1996. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198:324–333.

    Article  CAS  Google Scholar 

  • Horton, P., and A.V. Ruban. 1992. Regulation of photosystem II. Photosyn. Res. 34:375–385.

    Article  CAS  Google Scholar 

  • Huner, N.P.A., W. Migus, and M. Tollenaar. 1986. Leaf CO2 exchange rate in winter rye grown at cold-hardening and nonhardening temperatures. Can. J. Plant Sci. 66:443–452.

    Article  Google Scholar 

  • Huner, N.P.A., G. Öquist, V.M.Hurry,M.Krol,S.Falk, and M.Griffith.1993. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosyn. Res. 37:9–39.

    Article  Google Scholar 

  • Joliot, P., and A. Joliot. 1964. Études cinétiques de la réaction photochimique libérant l’oxygene au cours de la photosynthese. Compte Rendu Academie Sciences Paris 258:4622–4625.

    CAS  Google Scholar 

  • Karim, A., Y. Fracheboud, and P. Stamp. 1999. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than of developed leaves. Physiol. Plant. 105:685–693.

    Article  CAS  Google Scholar 

  • Kim, J.H., H.J. Hwang, H.S. Park, C.B. Lee, K.Y. Myung, and C.H. Lee. 1997. Differences in the rate of dephosphorylation of thylakoid proteins during dark incubation after chilling in the light between two rice (Oriza sativa L.) varieties. Plant Sci. 128:159–168.

    Article  CAS  Google Scholar 

  • Kok, B. 1956. On the inhibition of photosynthesis by intense light. Biochim. Biophys. Acta 21:234–244.

    Article  PubMed  CAS  Google Scholar 

  • Krivosheeva, A., D.L. Tao, C. Ottander, G. Wingsle, S.L. Dube, and G. Öquist. 1996. Coldacclimation and photoinhibition of photosynthesis in Scots pine. Planta 200:296–305.

    Article  CAS  Google Scholar 

  • Labate, C.A., M.D. Adcock, and R.C. Leegood. 1990. Effects of temperature on the regulation of photosynthetic carbon assimilation in leaves of maize and barley. Planta 181:547–554.

    Article  CAS  Google Scholar 

  • Lapointe, L., and N.P.A. Huner. 1993. Photoinhibition Of Isolated Mesophyll-Cells From Cold-Hardened And Nonhardened Winter Rye. Plant, Cell Environ. 16:249–258.

    Article  Google Scholar 

  • Leegood,R.C.,and G.E.Edwards.1996.Carbonmetabolism andphotorespiration: temperature dependence in relation to other environmental factors, p. 191–221. In: N.R. Baker (ed.), Advances in Photosynthesis, Volume 5: Photosynthesis and the Environment. Springer Science+Business Media New York, London.

    Google Scholar 

  • Leipner J, Y. Fracheboud, P. Stamp. 1997. Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant, Cell Environ. 20:366–372.

    Article  CAS  Google Scholar 

  • Leitsch J, B. Schnettger, C. Critchley, GH. Krause. 1993. Two mechanisms of recovery from photoinhibition in-vivo: reactivation of photosystem-II related and unrelated to Dl-protein turnover. Planta 194:15–21.

    Google Scholar 

  • Logan, B.A., B. Demmig-Adams, and W.W. Adams. 1998. Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. upon a sudden increase in growth PPFD in the field. J. Expt. Bot. 49:1881–1888.

    CAS  Google Scholar 

  • Niyogi, K.K. 1999. Photoprotection revisited: genetic and molecular approaches. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50:333–359.

    Article  CAS  Google Scholar 

  • Noctor, G., D. Rees, A. Young, and P. Horton. 1991. The relationship between zeaxanthin, energy-dependent quenching of chlorophyll fluorescence, and trans-thylakoid pH gradient in isolated chloroplasts. Biochim. Biophys. Acta 1057:320–330.

    Article  CAS  Google Scholar 

  • Ogren, W.L. 1984. Photorespiration: pathways, regulation, and modification. Ann. Rev. Plant Physiol. Plant Mol. Biol 35:415–442.

    Article  CAS  Google Scholar 

  • Ögren, E. 1993. Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol. 101:1013–1019.

    PubMed  Google Scholar 

  • Ögren,E.,and G. Öquist.1985.Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves. Planta 166:380–388.

    Article  Google Scholar 

  • Öquist, G., and N.P.A. Huner. 1993. Cold-hardening induced resistance to photoinhibition of photosynthesis in winter rye is dependent upon an increased capacity for photosynthesis. Planta 189:150–156.

    Article  Google Scholar 

  • Öquist, G., V.M. Hurry, and N.P.A. Huner. 1993. Low temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol. 101:245–250.

    PubMed  Google Scholar 

  • Oxborough, K., and N.R. Baker 1997. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components -calculation of qP and Fv’/Fm’ without measuring Fo’. Photosyn. Res. 54:135–142.

    Article  CAS  Google Scholar 

  • Pankovic, D., Z. Sakac, S. Kevresan, and M. Plesnicar. 1999. Acclimation to long term water defficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism. J. Expt. Bot. 50:127–138.

    Article  CAS  Google Scholar 

  • Paul,M.J.,D.W.Lawlor,andS.P.Driscoll.1990.The effect of temperatureon photosynthesis and carbon fluxes in sunflower and rape. J. Expt. Bot. 41:547–555.

    Article  CAS  Google Scholar 

  • Robertson, E.J, N.R. Baker, and R.M. Leech. 1993. Chloroplast thylakoid protein changes induced by low growth temperature in maize revealed by immunocytology. Plant Cell Environ. 16:809–818.

    Article  CAS  Google Scholar 

  • Schreiber U, U. Schliwa, and W. Bilger. 1986. Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosyn. Res. 10:51–62.

    Article  CAS  Google Scholar 

  • Seemann, J.R. 1989. Light adaptation / acclimation of photosynthesis and the regulation of 1,5 biphosphate carboxylase activity in sun and shade plants. Plant Physiol. 91:379–386.

    Article  PubMed  CAS  Google Scholar 

  • Sinsawat, V. 1999. Acclimation of the photosynthetic apparatus of maize seedlings (Zea mays L.) to high temperature. PhD thesis 13222, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  • Streb, P., W. Shang, and J. Feierabend. 1999. Resistance of cold-hardened winter rye leaves (Secale cereale L.) to photo-oxidative stress. Plant Cell Environ. 22:1211–1223.

    Article  CAS  Google Scholar 

  • Sundby, C., S. McCaffery, and J.M. Anderson. 1993. Turnover of the photosystem-II D1-protein in higher-plants under photoinhibitory and nonphotoinhibitory irradiance. J. Biol. Chem. 268:25476–25482.

    PubMed  CAS  Google Scholar 

  • Thayer, S.S., and O. Björkman. 1990. Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosyn. Res. 23:331–343.

    Article  CAS  Google Scholar 

  • Thornley,J.H.M.1976.Photosynthesis.In:J.F.SutcliffeandP.Mahlberg(eds.), Mathematical Models in Plant Physiology, Chapter 4. Academic Press, London.

    Google Scholar 

  • van Kooten, O., and J.H.F. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosyn. Res. 35:147–150.

    Article  Google Scholar 

  • Venema, J.H. 2001. Low-temperature tolerance of tomato and related wild species. A comparative study on chloroplast functioning. PhD thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Venema, J.H., L. Villerius, and P.R. van Hasselt. 2000. Effect of acclimation to suboptimal temperature on chilling-induced photodamage: comparison between a domestic and highaltitude wild Lycopersicon species. Plant Sci. 152:153–163.

    Article  CAS  Google Scholar 

  • Walters, R.G., and P. Horton.1991. Resolution of components of nonphotochemical chlorophyll fluorescence quenching in barley leaves. Photosyn. Res. 27:121–133.

    Article  CAS  Google Scholar 

  • Weis, E., and J.A. Berry. 1987. Quantum efficiency of photosystem II in relation to ’energy’-dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 894:198–208.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fracheboud, Y., Leipner, J. (2003). The Application of Chlorophyll Fluorescence to Study Light, Temperature, and Drought Stress. In: DeEll, J.R., Toivonen, P.M.A. (eds) Practical Applications of Chlorophyll Fluorescence in Plant Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0415-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0415-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5065-1

  • Online ISBN: 978-1-4615-0415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics