Skip to main content

Synthesis with Piezoelectric Actuation

  • Chapter
Optimal Synthesis Methods for MEMS

Part of the book series: Microsystems ((MICT,volume 13))

  • 290 Accesses

Synopsis

Synthesis methods, such as topology optimization method, have been widely applied to design mechanical structures. Therefore, it is natural that they can also be applied to design smart materials and MEMS structures whose current development has been based on the use of simple analytical models, test of prototypes, and analysis using the finite element method (FEM), usually limiting the problem to a parametric optimization. In contrast to those approaches, this chapter presents systematic synthesis methods for MEMS actuated by piezoelectric materials by using topology optimization combined with homogenization technique. In this method, the topology of a flexible structure coupled to a piezoceramic (flextensional actuator) is designed to maximize the output displacement (or force) in some specified direction. Beginning with a brief introduction to the piezoelectric constitutive equations and the FEM theory applied to the piezoelectricity, the chapter provides a self-contained description of the synthesis method for piezoelectrically actuated MEMS. The examples presented show that the synthesis method is indeed a promising tool to design smart materials and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newnham, R. E. and G. R. Ruschau. “Smart Electroceramics”. Journal of the American Ceramic Society. 74 No.3 (1991): 463–480.

    Article  Google Scholar 

  2. Ried, R.P., Kim, E.S., Hong, D.M., and Muller, R.S., “Piezoelectric Microphone with On-Chip CMOS Circuits,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 2, pp. 111–120, September 1993.

    Article  Google Scholar 

  3. Huang, Y.L., Zhang, H., Kim, E.S., Kim, S.G., and Jeon, Y.B.“Piezoelectrically Actuated Microcantilever for Actuated Mirror Array Application,” Technical digest of Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 2–6, 1996, pp. 191–195.

    Google Scholar 

  4. Huang, D. and Kim, E.S., “Micromachined Acoustic-Wave Liquid Ejector,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 10, pp. 442–449, September 2001.

    Article  Google Scholar 

  5. Vertsanova, O., Perlov, I., and Tsyganok, B., “Modelling of Processes of Photoacoustic Diagnostic with Piezoelectric Detection,” Proceedings of the 2000 Modeling and Simulation of Microsystems conference, pp. 249–252.

    Google Scholar 

  6. Fernandez, J. F., A. Dogan, Q..M. Zhang, J.F. Tressler, and R.E. Newnham. “Hollow Piezoelectric Composites”. Sensors and Actuators A. 51 (1996): 183–192.

    Article  Google Scholar 

  7. McCammon, D. F. and W. Thompson Jr. “The Design of Tonpilz Piezoelectric Transducers Using Nonlinear Goal Programming”. The Journal of the Acoustical Society of America. 68 No.3 (1980): 754–757.

    Article  Google Scholar 

  8. Simson, É. A. and A. Taranukha. “Optimization of the Shape of a Quartz Resonator”. Acoustical Physics. 39 No.5 (1993): 472–476.

    Google Scholar 

  9. Kim, J., V. V. Varadan, and V. K. Varadan. “Finite Element-Optimization Methods for the Active Control of Radiated Sound from a Plate Structure”. Smart Materials & Structures. 4 (1995): 318–326.

    Article  Google Scholar 

  10. Brissaud, M. “Characterization of Piezoceramics”. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38 No.6 (1991): 603–617.

    Article  Google Scholar 

  11. Allik, H. and T.J.R. Hughes. “Finite Element Method for Piezoelectric Vibration”. International Journal of Numerical Methods in Engineering. 2 (1970): 151–157.

    Article  Google Scholar 

  12. Naillon, M., R.H. Coursant, F. Besnier. “Analysis of Piezoelectric Structures by a Finite Element Method”, Acta Electronica, 25 4 (1983): 341–362.

    Google Scholar 

  13. Lerch, R. “Simulation of Piezoelectric Devices by Two-and Three-Dimensional Finite Elements”. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 37 No.2 (1990): 233–247.

    Article  MathSciNet  Google Scholar 

  14. Guo, N., P. Cawley, and D. Hitchings. “The Finite Element Analysis of the Vibration Characteristics of Piezoelectric Discs”. Journal of Sound and Vibration. 159 No.1 (1992):115–138.

    Article  MATH  Google Scholar 

  15. Kharouf, N. and P. R. Heyliger. “Axisymmetric Free Vibrations of Homogeneous and Laminated Piezoelectric Cylinders”. Journal of Sound and Vibration. 174 No.4 (1994): 539–561.

    Article  MATH  Google Scholar 

  16. Challande, P. “Optimizing Ultrasonic Transducers Based on Piezoelectric Composites Using a Finite-Element Method”. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 37 No.2 (1990): 135–140.

    Article  Google Scholar 

  17. Dogan, A., S. Yoshikawa, K. Uchino, and R. E. Newnham.”The Effect of Geometry on the Characteristics of the Moonie Transducer and Reliability Issue”. Proceedings of IEEE Ultrasonics Symposium. (1994): 935–939.

    Google Scholar 

  18. Dogan, A., K. Uchino, and R.E. Newnham. “Composite Piezoelectric Transducer with Truncated Conical Endcaps “Cymbal””. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 44 No.3 (1997): 597–605.

    Article  Google Scholar 

  19. Onitsuka, K., A. Dogan, J. F. Tressler, Q. Xu, S. Yoshikawa, and R. E. Newnham. “Metal-Ceramic Composite Transducer, The “Moonie””. Journal of Intelligent Material Systems and Structures. 6 (1995): 447–455.

    Article  Google Scholar 

  20. ANSI/IEEE Std 176–1978. “IEEE Standard on Piezoelectricity, Special Issue of Transactions on Sonics and Ultrasonics”. SU-31 No.2 (1984).

    Google Scholar 

  21. Eer Nisse, E. P. “Variational Method for Electroelastic Vibration Analysis”, IEEE Transactions on Sonics and Ultrasonics. SU-14, No.4: (1967): 153–160

    Article  Google Scholar 

  22. Kunkel, H. A., Locke, S. and Pikeroen, B. “Finite Element Analysis of Vibrational Modes in Piezoelectric Ceramic Disks”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 37 No.4 (1990):316–328.

    Article  Google Scholar 

  23. Modulef, http://www-rocq.inria.fr/modulef/english.html (1999)

    Google Scholar 

  24. Bathe, K. J. Finite Element Procedures. Englewood Cliffs, N.J.:Prentice-Hall, (1996).

    Google Scholar 

  25. Rolt, K. D. “History of the Flextensional Electroacoustic Transducer”. The Journal of the Acoustical Society of America. 87 No.3 (1990): 1340–1349.

    Article  Google Scholar 

  26. Decarpigny, J-N, B. Hamonic, and O. B. Wilson Jr. “The Design of Low-Frequency Underwater Acoustic Projectors: Present Status and Future Trends”. IEEE Journal of Oceanic Engineering. 16 No.1 (1991): 107–122.

    Article  Google Scholar 

  27. Xu, Q.C., S. Yoshikawa, J.R. Belsick, and R.E. Newnham. “Piezoelectric Composites with High Sensitivity and High Capacitance for Use at High Pressures”. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 38 No.6 (1991): 634–639.

    Article  Google Scholar 

  28. Xu, Q.C., A. Dogan, J.F. Tressler, S. Yoshikawa, and R. E. Newnham. “Ceramic-Metal Composite Actuator”. Proceedings of IEEE 1991 Ultrasonic Symposium. (1991): 923–928.

    Google Scholar 

  29. Newnham, R.E., A. Dogan, Q.C. Xu, K. Onitsuka, J.F. Tressler, and S. Yoshikawa. “Flextensional “Moonie” Actuators”. Proceedings of IEEE Ultrasonics Symposium. (1993): 509–513.

    Google Scholar 

  30. Ananthasuresh, G. K. and S. Kota. “Designing Compliant Mechanisms”. ASME Mechanical Engineering. November (1995): 93–96.

    Google Scholar 

  31. Frecker, M.I., G.K. Ananthasuresh, S. Nishiwaki, N. Kikuchi, and S. Kota. “Topological Synthesis of Compliant Mechanisms Using Multi-criteria Optimization”. Journal of Mechanical Design, Transaction of the ASME. 119 (1997): 238–245.

    Article  Google Scholar 

  32. Ananthasuresh, G.K., S. Kota, and Y. Gianchandani. “Systematic Synthesis of Microcompliant Mechanisms - Preliminary Results”. Proceedings of the Third National Conference on Applied Mechanisms and Robotics. Cincinnati Ohio (1993): Paper 82.

    Google Scholar 

  33. Ananthasuresh, G.K., S. Kota, and N. Kikuchi. “Strategies for Systematic Synthesis of Compliant MEMS”. Proceedings of the 1994 ASME Winter Annual Meeting. Chicago Illinois DSC-55–2 (1994): 677–686.

    Google Scholar 

  34. Nishiwaki, S., M.I. Frecker, S. Min, and N. Kikuchi. “Optimization of Compliant Mechanisms Using the Homogenization Method”. International Journal for Numerical Methods in Engineering. 42, No.3 (1998): 535–559.

    Article  MathSciNet  MATH  Google Scholar 

  35. Sigmund, O. “On the Design of Compliant Mechanisms Using Topology Optimization”. Mechanics of Structures and Machines 25 No.4 (1997): 495–526.

    Article  Google Scholar 

  36. Silva, E.C.N., S. Nishiwaki, J.S.O. Fonseca, A.T. Crumm, G.A. Brady, F.R.M. Espinosa, J.W. Halloran, and N. Kikuchi “Topology Optimization Applied to the Design of Piezocomposite Materials and Piezoelectric Actuators”, Proceedings of Mathematics and Control in Smart Structures - 5 th SPIE (Annual International Symposium on Smart Structures and Materials), San Diego, California, (USA), (1998): 216–227.

    Google Scholar 

  37. Silva, E.C.N., S. Nishiwaki, and N. Kikuchi “Design of Piezoelectric Transducers Using Topology Optimization”, Proceedings of Fourth World Congress on Computational Mechanics (WCCM-IV), Buenos Aires, Argentina, (CDROM), (1998).

    Google Scholar 

  38. Silva, E.C.N., S. Nishiwaki, and N. Kikuchi “Topology Optimization Design of Flextensional Actuators”, IEEE Transations on Ultrasonics, Ferroelectrics and Frequency Control 47 (3) (2000): 657–671.

    Article  Google Scholar 

  39. Canfield, S. and M. Frecker “Topology Optimization of Compliant Mechanical Amplifier for Piezoelectric Actuator”. Structural Multidisciplinary Optimization, 20, (2000): 269–279.

    Article  Google Scholar 

  40. Kota, S., J. Hetrick, Z. Li, and L. Saggere “Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications”. IEEE/ASME Transactions on Mechatronics 4 No.4 (1999): 396–408.

    Article  Google Scholar 

  41. Barber, J. M. Elasticity. Kluwer Academic, Dordrecht, (1992).

    Book  MATH  Google Scholar 

  42. Bendsøe, M. P. and N. Kikuchi “Generating Optimal Topologies in Structural Design Using a Homogenization Method”. Computer Methods in Applied Mechanics and Engineering. 71 (1988): 197–224.

    Article  MathSciNet  Google Scholar 

  43. Pedersen, P. “On Optimal Orientation of Orthotropic Materials”, Structural Multidisciplinary Optimization 1 No.2 (1989): 101–106.

    Article  Google Scholar 

  44. Silva, E.C.N. “Design of Piezoelectric Motors Using Topology Optimization”, Proceedings of Modeling, Signal Processing, and Control in Smart Structures - 8 th SPIE (Annual International Symposium on Smart Structures and Materials), Newport Beach, California (USA) (2001): 513–524.

    Google Scholar 

  45. Li, Y., X. Xin, N. Kikuchi, and K. Saitou “Optimal Shape and Location of Piezoelectric Materials for Topology Optimization of Flextensional” Proceedings of Sixth U.S. National Congress on Computational Mechanics (USNCCM), Dearborn, Michigan (USA) (2001): 566.

    Google Scholar 

  46. Correia, V.M.F., C.M.M. Soares, and C.A.M. Soares “A Numerical Model for the Optimal Design of Composite Laminated Structures with Piezoelectric Laminae”, Proceedings of Mathematics and Control in Smart Structures - 6 th SPIE (Annual International Symposium on Smart Structures and Materials), Newport Beach, California (USA), (1999).

    Google Scholar 

  47. Silva, E.C.N. and N. Kikuchi “Design of Piezoelectric Transducers Using Topology Optimization”, Journal of Smart Materials and Structures No.8 (1999): 350–364.

    Article  Google Scholar 

  48. Silva, E.C.N., S. Nishiwaki, and N. Kikuchi, “Design of Piezocomposite Materials and Piezoelectric Transducers Using Topology Optimization - Part II”, Archives of Computational Methods in Engineering, Vol. 6, No.3 (1999): 191–222.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silva, E.C.N. (2003). Synthesis with Piezoelectric Actuation. In: Optimal Synthesis Methods for MEMS. Microsystems, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0487-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0487-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5101-6

  • Online ISBN: 978-1-4615-0487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics