Skip to main content

Synthesis of Periodic Micro Mechanisms

Extremal material design by topology optimization

  • Chapter
Optimal Synthesis Methods for MEMS

Part of the book series: Microsystems ((MICT,volume 13))

  • 296 Accesses

Abstract

Extremal materials may exhibit mechanism like behaviours. Examples are negative Poisson’s ratio materials that expand transversely when pulled horizontally. Such materials are often composed of periodic arrays of simple microscopic mechanisms and may therefore be called Periodic Micro Mechanisms (PMMs). This chapter describes how PMMs can be systematically synthesized using the topology optimization method. A number of examples including design of negative Poisson’s ratio, negative thermal expansion coefficient and band gap PMMs are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. F. Hawkins. Augmenting the mechanical properties of materials by embedding simple machines. Journal of Advanced Materials - SAMPE, 34(3):16–20, 2002.

    Google Scholar 

  2. M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2):197–224, 1988.

    Article  MathSciNet  Google Scholar 

  3. M. P. Bendsøe and O. Sigmund. Topology Optimization - Theory, Methods and Applications. Springer Verlag, Berlin Heidelberg, Xiv+370 pp., 2003.

    Google Scholar 

  4. O. Sigmund. Design of material structures using topology optimization. PhD thesis, Department of Solid Mechanics, Technical University of Denmark, December 1994.

    Google Scholar 

  5. O. Sigmund. Materials with prescribed constitutive parameters: an inverse homogenization problem. International Journal of Solids and Structures, 31(17):2313–2329, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Sigmund. Tailoring materials with prescribed elastic properties. Mechanics of Materials, 20:351–368, 1995.

    Article  Google Scholar 

  7. O. Sigmund. Some inverse problems in topology design of materials and mechanisms. In D. Bestle and W. Schielen, editors, Symposium on optimization of mechanical systems, pages 277–284, Netherlands, 1996. IU-TAM, Kluwer.

    Google Scholar 

  8. K. Terada and N. Kikuchi. Microstructural design of composites using the homogenization method and digital images. Mat. Sci. Res. Int., 2:65–72, 1996.

    Google Scholar 

  9. C. C. Swan and I. Kosaka. Voigt-Reuss topology optimization for structures with linear elastic material behaviours. International Journal for Numerical Methods in Engineering, 40(16):3033–3058, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. S. Theocaris and G. E. Stavroulakis. Multilevel optimal design of composite structures including materials with negative Poisson’s ratio. Structural Optimization, 15(1):8–15, 1998.

    Article  Google Scholar 

  11. O. Sigmund. A new class of extremal composites. Journal of the Mechanics and Physics of Solids, 48(2):397–428, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. V. Gibiansky and O. Sigmund. Multiphase elastic composites with extremal bulk modulus. Journal of the Mechanics and Physics of Solids, 48(3):461–498, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Hyun and S. Torquato. Designng composite microstructures with tageted properties. Materials Research Society, 16(1):280–285, 2000.

    Article  Google Scholar 

  14. M. M. Neves, H. C. Rodrigues, and J. M. Guedes. Optimal design of periodic linear elastic microstructures. Computers & Structures, 76:421–429, 2000.

    Article  Google Scholar 

  15. J. M. Guedes, H. C. Rodrigues, and M. P. Bendsøe. On the computational approximation of energy bounds for multiload cases with one level of microstructure. In G. D. Cheng, Y. Gu, S. Liu, and Y. Wang, editors, WCSMO-4 - Proc. Second World Congress of Structural and Multidisci-plinary Optimization, Dalian, 2001. Liaoning Electronic Press. CD-rom, ISBN 7–900312–69–2.

    Google Scholar 

  16. R. H. W. Hoppe and S. I. Petrova. VI large-scale computations for mechanical engineering problems - structural optimization of biomorphic microcellular ceramics by homogenization approach. Lecture Notes in Computer Science, 2179:353–360, 2001.

    Article  Google Scholar 

  17. J. Haslinger and J. Dvořák. Optimum composite material design. RAIRO-Mathematical Modelling and Numerical Analysis-Modelisation, 29(6):657–686, 1995.

    MATH  Google Scholar 

  18. O. Sigmund and S. Torquato. Composites with extremal thermal expansion coefficients. Applied Physics Letters, 69(21):3203–3205, 1996.

    Article  Google Scholar 

  19. O. Sigmund and S. Torquato. Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 45(6): 1037–1067, 1997.

    Article  MathSciNet  Google Scholar 

  20. D. Fujii, B.-C. Chen, and N. Kikuchi. Composite material design of two-dimensional structures using the homogenization design method. International Journal for Numerical Methods in Engineering, 50:2032–2051, 2001.

    Article  MathSciNet  Google Scholar 

  21. E. C. N. Silva, J. S. O. Fonseca, and N. Kikuchi. Optimal design of piezoelectric microstructures. Computational Mechanics, 19(5):397–410, 1997.

    Article  MATH  Google Scholar 

  22. E. C. N. Silva, J. S. O. Fonseca, and N. Kikuchi. Optimal design of periodic piezocomposites. Computer Methods in Applied Mechanics and Engineering, 159(2):49–77, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Sigmund and S. Torquato. Design of smart composite materials using topology optimization. Smart Materials and Structures, 8(3):365–379, 1999.

    Article  Google Scholar 

  24. C. C. Swan and J. S. Arora. Topology design of material layout in structured composites of high stiffness and strength. Structural Optimization, 13(l):45–59, 1997.

    Article  Google Scholar 

  25. Y. Yi, S. Park, and S.-K. Youn. Design of microstructures of viscoelastic composites for optimal damping characteristics. International Journal of Solids and Structures, 37:4791–4810, 2000.

    Article  MATH  Google Scholar 

  26. S. J. Cox and D. C. Dobson. Maximizing band gaps in two-dimensional photonic crystals. SIAM Journal for Applied Mathematics, 59(6):2108–2120, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. J. Cox and D. C. Dobson. Band structure optimization of two-dimensional photonic crystals in h-polarization. Journal of Computational Physics, 158(2):214–224, 2000.

    Article  MATH  Google Scholar 

  28. O. Sigmund and J. S. Jensen. Systematic design of phononic band gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences, page to appear, 2003.

    Google Scholar 

  29. O. Sigmund and J. S. Jensen. Topology optimization of elastic band gap structures and waveguides. In H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner, editors, Proceedings of the Fifth World Congress on Computational Mechanics, page http://wccm.tuwien.ac.at. Vienna University of Technology, Austria, 2002.

    Google Scholar 

  30. O. Sigmund. On the design of compliant mechanisms using topology optimization. Mechanics of Structures and Machines, 25(4):495–526, November 1997.

    Article  Google Scholar 

  31. S. J. Hollister, R. D. Maddox, and J. M. Taboas. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials, 23(20):4095–4103, 2002.

    Article  Google Scholar 

  32. R. S. Lakes and W. J. Drugan. Dramatically stiffer elastic composite materials due to a negative stiffness phase? Journal of the Mechanics and Physics of Solids, 50(5):979–1009, 2002.

    Article  MATH  Google Scholar 

  33. U. D. Larsen, O. Sigmund, and S. Bouwstra. Design and fabrication of compliant micromechanisms and structures with negative poisson’s ratio. IEEE Journal of Microelectromechanical Systems, 6(2):99–106, 1997.

    Article  Google Scholar 

  34. A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis of periodic structures. North-Holland Publ., 1978.

    Google Scholar 

  35. R. M. Christensen. Mechanics of Composite Materials. Krieger, Amsterdam, 1991.

    Google Scholar 

  36. K. Svanberg. The method of moving asymptotes - A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24:359–373, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  37. O. Sigmund and J. Petersson. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 16(1):68–75, 1998.

    Article  Google Scholar 

  38. T. Borrvall. Topology optimization of elastic continua using restriction. Archives of Computational Methods in Engineering, 8(4):351–385, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  39. O. Sigmund. A 99 line topology optimization code written in MATLAB. Structural and Multidisciplinary Optimization, 21:120–127, 2001.

    Article  Google Scholar 

  40. A. G. Kolpakov. Determination of the average characteristics of elastic frameworks. PMM Journal of applied Mathematics and Mechanics, U.S.S.R., 49:739–745, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. F. Almgren. An isotropic three-dimensional structure with Poisson’s ratio = -1. Journal of Elasticity, 12:839–878, 1985.

    Google Scholar 

  42. R. Lakes. Foam structures with negative Poisson’s ratio. Science, 235:1038, 1987.

    Article  Google Scholar 

  43. G. W. Milton. Composite materials with Poisson’s ratios close to —1. Journal of the Mechanics and Physics of Solids, 40(5): 1105–1137, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Rothemburg, A. A. Berlin, and J. Bathurst. Microstructures of isotropic materials with negative poisson’s ratio. Nature, 354:470–472, 1991.

    Article  Google Scholar 

  45. R. A. Schapery. Thermal expansion coefficients of composite materials based on energy principles. Journal of Composite Materials, 2(3):380–404, 1968.

    Article  Google Scholar 

  46. B. W. Rosen and Z. Hashin. Effective thermal expansion and specific heat of composite materials. International Journal of Engineering Science, 8:157–173, 1970.

    Article  Google Scholar 

  47. L. V. Gibiansky and S. Torquato. Thermal expansion of isotropic multiphase composites and polycrystals. Journal of the Mechanics and Physics of Solids, 45(7):1223–1252, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Avellaneda and P. J. Swart. Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: An effective medium approach. Journal of the Acoustical Society of America, 103(3):1449–67, 1998.

    Article  Google Scholar 

  49. O. Sigmund, S. Torquato, and I. A. Aksay. On the design of 1–3 piezocomposites using topology optimization. Journal of Materials Research, 13(4): 1038–1048, 1998.

    Article  Google Scholar 

  50. J. Mathews and R. Walker. Mathematical Methods of Physics. Addison-Wesley, Redwood City, Calif., 1964.

    Google Scholar 

  51. C. Kittel. Solid State Physics. John Wiley & Sons, New York, 1986.

    Google Scholar 

  52. L. Brillouin. Wave propagation in Periodic Structures. McGraw-Hill, New York, 1946.

    MATH  Google Scholar 

  53. J. O. Vasseur, P. A. Deymier, G. Frantziskonis, G. Hong, B. Djafari-Rouhani, and L. Dobrzynski. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. Journal of Physics: Condensed Matter, 10(27):6051–64, 1998.

    Article  Google Scholar 

  54. T. Borrvall and J. Petersson. Topology optimization using regularized intermediate density control. Computer Methods in Applied Mechanics and Engineering, 190:4911–4928, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  55. E. Yablonovitch, T. J. Gmitter, and K. M. Leung. Photonic band structures: The face-centered cubic case employing non-spherical atoms. Physical Review Letters, 67:2295, 1991.

    Article  Google Scholar 

  56. J. D. Joannopolis, R. D. Meade, and J. N. Winn. Photonic Crystals: Molding the Flow of Light. Princeton University Press, 1995.

    Google Scholar 

  57. T. E. Bruns and O. Sigmund. Topology design of bistable mechanisms. In G. D. Cheng, Y. Gu, S. Liu, and Y. Wang, editors, WCSMO-4 - Proc. Second World Congress of Structural and Multidisciplinary Optimization, Dalian, 2001. Liaoning Electronic Press. CD-rom, ISBN 7–900312–69–2.

    Google Scholar 

  58. T. E. Bruns, O. Sigmund, and D. A. Tortorelli. Numerical methods for the topology optimization of structures that exhibit snap-through. International Journal for Numerical Methods in Engineering, 55:1215–1237, 2002.

    Article  MATH  Google Scholar 

  59. T. E. Bruns. Topology design of thermomechanically actuated snap and bistable mechanisms. In H. A. Mang, F. G. Rammerstorfer, and J. Eberhardsteiner, editors, Proceedings of the Fifth World Congress on Computational Mechanics, page http://wccm.tuwien.ac.at. Vienna University of Technology, Austria, 2002.

    Google Scholar 

  60. O. Sigmund. Design of multiphysics actuators using topology optimization - Part I: One-material structures. Computer Methods in Applied Mechanics and Engineering, 190(49–50):6577–6604, 2001.

    Article  MATH  Google Scholar 

  61. O. Sigmund. Design of multiphysics actuators using topology optimization - Part II: Two-material structures. Computer Methods in Applied Mechanics and Engineering, 190(49–50):6605–6627, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sigmund, O. (2003). Synthesis of Periodic Micro Mechanisms. In: Optimal Synthesis Methods for MEMS. Microsystems, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0487-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0487-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5101-6

  • Online ISBN: 978-1-4615-0487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics