Skip to main content

Abstract

Paraoxonase (PON1) is an HDL-bound glycoprotein exhibiting calcium-dependent hydrolase and antioxidative activities, both related to distinct structural domains. Few structural data on PON1 and other related proteins, PON2 and 3, are currently available. The sequence of the 354 amino acid mature enzyme has been deduced from its cDNA. PON1 has 3 Cys residues: Cys-42 and -353 form a disulfide bond, Cys-284 is free. The PON1 hydrophobic N-terminus, predicted as an α-helix, is involved in the association of PON1 with phospholipids. The native enzyme purified from human plasma is not exclusively monomelic. The oligomeric state and size of human PON1 bound to non-ionic detergent molecules depends on the concentration of detergent. Five His (H115, H134, H155, H243, H285), 1 Trp (W281), 2 G1u (E53, E195) and 6 Asp (D54, D169, D183, D269, D279) residues are essential for human PON1 arylesterase and organophosphatase activities. The residues in position 192 and 284, although not essential for the PON1 hydrolase activity, could be close to the active site. PON1 shares common structural and functional features with other lactonohydrolases, mainly PON3. The PON1 3D structure will be established in the near future. It will help to relate PON1 structural and functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins S, Gan KN, Mody M, La Du BN (1993) Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am Hum Genet 52: 598–608

    CAS  Google Scholar 

  • Aviram M (1999) Does paraoxonase play a role in susceptibility to cardiovascular disease? Mol. Med Today 5: 381–386

    Article  CAS  Google Scholar 

  • Aviram M, Billecke S, Sorenson R, Bisgaier C, Newton R, Rosenblat M, Erogul J, Hsu C, Dunlop C, La Du B (1998) Paraoxonase active site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its arylesterase/paraoxonase activities: selective action of human paraoxonase allozymes Q and R. Arterioscler Thromb Vasc Biol 18: 1617–1624

    Article  CAS  Google Scholar 

  • Aviram M, Hardak E, Vaya J, Mahmood S, Milo S, Hoffman A, Billicke S, Draganov D, Rosenblat M (2000) Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation, 101, 2510–2517.

    Article  CAS  Google Scholar 

  • Banzon JA, Kuo JM, Fischer DR, Stang PJ, Raushel FM (1995) Histidine-254 is essential for the inactivation of Phosphodiesterase with the alkynyl phosphate esters and diethyl pyrocarbonate. Biochemistry 34: 750–754

    Article  CAS  Google Scholar 

  • Banzon JA, Kuo JM, Miles BW, Fischer DR, Stang PJ, Raushel FM (1995) Mechanism-based inactivation of phosphotriesterase by reaction of a critical histidine with a ketene intermediate. Biochemistry 34: 743–749

    Article  CAS  Google Scholar 

  • Blatter MC, James RW, Messmer S, Barja F, Pometta D (1993) Identification of a distinct human high-density lipoprotein subspecies defined by a lipoprotein-associated protein, K-45. Identity of K-45 with paraoxonase. Eur J Biochem 211: 871–879

    Article  CAS  Google Scholar 

  • Brodersen DE, Nyborg J, Kjeldgaard M (1999) Zinc-binding site of an S100 protein revealed. Two crystal structures of calcium-bound human psoriasin (S100A7) in the zinc-loaded and zinc-free states. Biochemistry 38: 1695–1704

    Article  CAS  Google Scholar 

  • Brouillette CG, Anantharamaiah GM (1995) Structural models of human apolipoprotein A-I. Biochim Biophys Acta 1256: 103–129

    Article  Google Scholar 

  • Bruce C, Davidson W, Kussie P, Lund-Katz S, Phillips MC, Ghosh R, Tall AR (1995) Molecular determinants of plasma cholesteryl ester transfer protein binding to high density lipoproteins. J Biol Chem 270: 11532–11542

    Article  CAS  Google Scholar 

  • Chabrière E, Viguié N, Baud D, Josse D, Ferrer J-L, Fontecilla-Camps JC, Masson P (2000) Proceedings of the Bioscience Review-US Army Medical Research and Material Commands, June 4-9, Hunt Valley, MD, USA. (in press)

    Google Scholar 

  • Choi SS, Forster T (1967) Purification of bovine plasma arylesterase. J Dairy Sci 50: 1088–1091

    Article  CAS  Google Scholar 

  • Choi SS, Forster TL (1967) Triton X-155 as a stabilizer of bovine plasma arylesterase activity. J Dairy Sci 50: 837–839

    Article  CAS  Google Scholar 

  • Davies H, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong, CE (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14: 334–336

    Article  CAS  Google Scholar 

  • Don MM, Masters CJ, Winzor DJ (1975) Further evidence for the concept of bovine plasma arylesterase as a lipoprotein. Biochem J 151: 625–630

    CAS  Google Scholar 

  • Doom JA, Sorenson RC, Billecke SS, Hsu C, La Du BN (1999) Evidence that several conserved histidine residues are required for hydrolytic activity of human paraoxonase/arylesterase. Chem. Biol. Interact 119-120: 235–241

    Article  Google Scholar 

  • Draganov DI, Stetson PL, Watson CE, Billecke SS, La Du BN (2000) Rabbit serum paraoxonase 3 (PON3) is an HDL-associated lactonase and protects LDL against oxidation. J Biol Chem 275: 33435–33442

    Article  CAS  Google Scholar 

  • Eckerson HW, Wyte CM, La Du BN (1983) The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet 35: 1126–1138

    CAS  Google Scholar 

  • Erdös EG, Debay CR, Westerman MP (1960) Arylesterases in blood:effect of calcium and inhibitors. Biochem Pharmacol 5: 173–186

    Article  Google Scholar 

  • Evans CH (1990) Chapter 2:Chemical properties of biochemical relevance In: Biochemistry of the lanthanides. Evans, CH (ed) Plenum Press, New York, NY, 9–46

    Google Scholar 

  • Furlong CE, Costa LG, Hassett C, Richter RJ, Sundstrom JA, Adler DA, Disteche CM, Omiecinski CJ, Chapline C, Crabb JW (1993) Human and rabbit paraoxonases: purification, cloning, sequencing, mapping and role of polymorphism in organophosphate detoxification. Chem Biol Interact 87: 35–48

    Article  CAS  Google Scholar 

  • Furlong CE, Richter RJ, Chapline C, Crabb JW (1991) Purification of rabbit and human serum paraoxonase. Biochemistry, 30: 10133–10140

    Article  CAS  Google Scholar 

  • Furlong CE, Richter RJ, Seidel SL, Motulsky AG (1988) Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 43: 230–238

    CAS  Google Scholar 

  • Gan KN, Smolen A, Eckerson HW, La Du BN (1991) Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalyzing both activities. Drug Metab Dispos 19: 100–106

    CAS  Google Scholar 

  • Garavito RM, Picot D, Loll PJ (1994) Prostaglandin H synthase. Curr Opin Struct Biol 4: 529–535

    Article  CAS  Google Scholar 

  • Garin MC, James RW, Dussoix P, Blanche H, Passa P, Froguel P, Ruiz J (1997) Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. J Clin Invest 99: 62–66

    Article  CAS  Google Scholar 

  • Geldmacher-Von Mallinckrodt M, Diepgen TL (1988) The human serum paraoxonase-Polymorphism and specificity. Toxicol Env Chem 18: 79–196

    Article  Google Scholar 

  • Goyal J, Wang K, Liu M, Subbaiah PV (1997) Novel Function of lecithin-cholesterol acyltransferase. J Biol Chem 272: 16231–16239

    Article  CAS  Google Scholar 

  • Hassett C, Richter RJ, Humbert R, Chapline C, Crabb JW, Omiecinski CJ, Furlong CE (1991) Characterization of cDNA clones encoding rabbit and human serum paraoxonase: the mature protein retains its signal sequence. Biochemistry 30: 10141–10149

    Article  CAS  Google Scholar 

  • Humbert R, Adler DA, Disteche CM, Hassett C, Omiecinski CJ, Furlong CE (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3: 73–76

    Article  CAS  Google Scholar 

  • Jakubowski H (2000) Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation. J Biol Chem 275: 3957–3962

    Article  CAS  Google Scholar 

  • James RW, Blatter Garin MC, Calabresi L, Miccoli R, Von Eckardstein A, Tilly-Kiesi M, Taskinen MR, Assmann G, Franceschini G (1998) Modulated serum activities and concentrations of paraoxonase in high density lipoprotein deficiency states. Atherosclerosis 139: 77–82

    Article  CAS  Google Scholar 

  • Josse D (1999) Vers la détermination du centre actif et de la structure de la paraoxonase humaine. Ph D. dissertation. University de Grenoble, France

    Google Scholar 

  • Josse D, Xie W, Masson P, Schopfer M, Lockridge O (1999b) Tryptophan residue(s) as major components of the human serum paraoxonase active site. Chem Biol Interact, 119-120: 79–84

    Article  CAS  Google Scholar 

  • Josse D, Xie W, Renault F, Rochu D, Schopfer LM, Masson P, Lockridge O (1999a) Identification of residues essential for human paraoxonase (PON1) arylesterase/ organophosphatase activities. Biochemistry 38: 2816–2825

    Article  CAS  Google Scholar 

  • Kelso GJ, Stuart WD, Richter RJ, Furlong CE, Jordan-Starck TC, Harmony JA (1994) Apolipoprotein J is associated with paraoxonase in human plasma. Biochemistry 33: 832–839

    Article  CAS  Google Scholar 

  • Kitchen BJ, Masters CJ, Winzor DJ (1973) Effects of lipid removal on the molecular size and kinetic properties of bovine plasma arylesterase. Biochem J 135: 93–99

    CAS  Google Scholar 

  • Kobayashi M, Shinohara M, Sakoh C, Kataoka M, Shimizu S (1998) Lactone-ring-cleaving enzyme: genetic analysis, novel RNA editing, and evolutionary implications. Proc Natl Acad Sci USA 95: 12787–12792

    Article  CAS  Google Scholar 

  • Kuo CL, La Du BN (1998) Calcium binding by human and rabbit serum paraoxonases. Structural stability and enzymatic activity. Drug Metab Dispos, 26: 653–660

    CAS  Google Scholar 

  • Kuo CL, La Du BN (1995) Comparison of purified human and rabbit serum paraoxonases. Drug Metab Dispos 23: 935–944

    CAS  Google Scholar 

  • La Du BN, Aviram M, Billecke S, Navab M, Primo-Parmo S, Sorenson RC, Standiford TJ (1999) On the physiological role(s) of the paraoxonases. Chem Biol Interact, 119-120: 379–388

    Article  Google Scholar 

  • Mackness MI, Walker CH (1988) Multiple forms of sheep serum A-esterase activity associated with the high-density lipoprotein. Biochem J 250: 539–545

    CAS  Google Scholar 

  • Mackness MI, Walker CH (1983) Partial purification and properties of sheep serum“A’-esterases. Biochem Pharmacol 32: 2291–2296

    Article  CAS  Google Scholar 

  • Main AR (1960) The purification of the enzyme hydrolysing diethyl p-nitrophenyl phosphate (paraoxon) in sheep serum. Biochem J 74: 10–20

    CAS  Google Scholar 

  • Masson P, Josse D, Lockridge O, Viguté N, Taupin C, Buhler C (1998) Enzymes hydrolyzing organophosphates as potential catalytic scavengers against organophosphate poisoning. Physiol Paris 92: 357–362

    Article  CAS  Google Scholar 

  • Mazur A (1946) An enzyme in animal tissues capable of hydrolyzing the phosphorus-fluorine bond of alkyl fluorophosphates. J Biol Chem 164: 271–289

    CAS  Google Scholar 

  • McPhalen CA, Strynadka NCJ, James MNG (1991) Calcium-binding sites in proteins: a structural perspective. Adv Prot Chem 42: 77–144

    Article  CAS  Google Scholar 

  • Ozols J (1999) Isolation and complete covalent structure of liver microsomal paraoxonase. Biochem J, 338: 265–272

    Article  CAS  Google Scholar 

  • Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/ arylesterase gene (PON1) is one member of a multigene family. Genomics 33: 498–507

    Article  CAS  Google Scholar 

  • Segrest JP, Darber DW, Brouillette CG, Harvey SC, Anantharamaiah GM (1994) The amphipathic a-helix: amultifunctional structural motif in plasma apolipoproteins. Adv Prot Chem 45: 303–369

    Article  CAS  Google Scholar 

  • Smolen A, Eckerson HW, Gan KN, Hailat N, La Du BN (1991) Characteristics of the genetically determined allozymic forms of human serum paraoxonase/arylesterase. Drug Metab Dispos 19: 107–112

    CAS  Google Scholar 

  • Sorenson RC, Aviram M, Bisgaier CL, Billecke S, Hsu C, La Du BN (1999) Properties of the retained N-terminal hydrophobic leader sequence in human serum paraoxonase/ arylesterase. Chem Biol Interact, 119-120: 243–249

    Article  CAS  Google Scholar 

  • Sorenson RC, Primo-Parmo SL, Kuo CL, Adkins S, Lockridge O, La Du BN (1995) Reconsideration of the catalytic center and mechanism of mammalian paraoxonase/ arylesterase. Proc. Natl Acad Sci USA 92: 7187–7191

    Article  CAS  Google Scholar 

  • Swaney JB, O’Brien K (1978) Cross-linking studies of the self-association properties of apo A-I and apo A-II from human high density lipoprotein. J Biol Chem 253: 7069–7077

    CAS  Google Scholar 

  • Vallee BL, Auld DS (1993) New perspective on zinc biochemistry: cocatalytic sites in multizinc enzymes. Biochemistry 32: 6493–6500

    Article  CAS  Google Scholar 

  • Vohl M.-C, Neuville TA-M, Kumarathasan R, Braschi S, Sparks DL (1999) A novel lecithin-cholesterol acyltransferase antioxidant activity prevents the formation of oxidized lipids during lipoprotein oxidation. Biochemistry 38: 5976–5981

    Article  CAS  Google Scholar 

  • Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96: 2882–2891

    Article  CAS  Google Scholar 

  • Wendt KU, Lenhart A, Schulz GE (1999) The structure of the membrane protein squalenehopene cyclase at 2.0 Å resolution. J. Mol. Biol 286: 175–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Josse, D., Masson, P., Bartels, C., Lockridge, O. (2002). PON1 Structure. In: Costa, L.G., Furlong, C.E. (eds) Paraoxonase (PON1) in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1027-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1027-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5358-4

  • Online ISBN: 978-1-4615-1027-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics