Skip to main content

Pancreatic Lipase

Physiological Studies

  • Chapter
Intestinal Lipid Metabolism

Abstract

In vertebrates there are at least three genetic families of lipases that regulate the distribution of ingested neutral ester lipids, that is, triacylglycerols and their degradation products, among tissues and among intracellular compartments. Each of the lipases involved in lipid homeostasis is adapted to function optimally in a specific environment. Even so, the major challenges faced by lipases are shared by all species. Most notably, the lipases of the families mentioned previously are separated from the bulk of their substrates by a monolayer or multilayer of amphipathic molecules. This occurs because the lipases are water-soluble proteins, whereas their triacylglycerol and diacylglycerol substrates are relatively apolar and form bulk oil phases in aqueous environments (Small, 1970). In vivo, amphipathic lipids and/or proteins are also present, depending on where the lipase functions. Thus, the lipase needs to remain soluble in water yet be able to attach itself to the appropriate substrate-containing lipid droplet, lipoprotein, or membrane. It must also avoid futile association with inert interfaces, that is, membranes that do not cover substrate-containing bulk phases, which would effectively inhibit the activity of the lipase by separating it from its intended substrate. The specific strategies used for adsorbing to the proper interface and gaining access to the substrate depend on the interfacial compositions of the substrate-containing and competing interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abousalham, A., Chaillan, C., Kerfelec, B., Foglizzo, E., and Chapus, C., 1992, Uncoupling of catalysis and colipase binding in pancreatic lipase by limited proteolysis, Protein Eng. 5:105–111.

    Article  PubMed  CAS  Google Scholar 

  • Armand, M., Borel, P., Pasquier, B., Dubois, C., Senft, M., Andre, M., Peyrot, J., Salducci, J., and Lairon, D., 1996, Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum, Am. J. Physiol. 34:G:172–G 183.

    Google Scholar 

  • Ayvazian, L., Crenon, I., Granon, S., Chapus, C., and Kerfelec, B., 1996, Recombinant C-terminal domain of pancreatic lipase retains full ability to bind colipase, Protein Eng. 9:707–711.

    Article  PubMed  CAS  Google Scholar 

  • Baskys, B., Klein, E., and Lever, W. F., 1963, Lipases of blood and tissues. III. Purification and properties of pancreatic lipase, Arch. Biochem. Biophys. 102:201–209.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, C., Buc, J., and Piéroni, G., 1996, Lipolysis and heterogeneous catalysis. A new concept for expressing the substrate concentration,Lipids 31:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Bernbäck, S., Hernell, O., and Bläckberg, L., 1987, Bovine pregastric lipase: A model for the human enzyme with respect to properties relevant to its site of action,Biochim.Biophys.Acta 922:206–213.

    Article  PubMed  Google Scholar 

  • Borgström, B., 1975, On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts,J.Lipid Res. 16:411–417.

    PubMed  Google Scholar 

  • Borgström, B., 1980, Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat. In vitro experiments with the porcine enzymes,Gastroenterology 78:954–962.

    PubMed  Google Scholar 

  • Borgström, B. 1993, Luminal digestion of fats, in:The Pancreas:Biology, Pathobiology and Disease, 2nd edition (V. L. W. Go, E. P. DiMagno, J. D. Gardner, E. Lebenthal, H. A. Reber, and G. A. Scheele, eds.), Raven Press, New York, pp. 475–488.

    Google Scholar 

  • Borgström, B., and Donnér, J., 1976, On the binding of bile salt to pancreatic lipase, Biochim.Biophys.Acta 450:352–357.

    Article  PubMed  Google Scholar 

  • Borgström, B., and Erlanson-Albertsson, C., 1984, Pancreatic colipase, in:Lipases (B. Borgström and H. L. Brockman, eds.), Elsevier Science Publishers, Amsterdam, pp. 151– 183.

    Google Scholar 

  • Borgström, B., Dahlquist, A., Lundh, G., and Sjovall, J., 1957, Studies of intestinal digestion and adsorption in the human,J.Clin.Invest. 36; 1521–1536.

    Article  PubMed  Google Scholar 

  • Borgström, B., Wieloch, T., and Erlanson-Albertsson, C., 1979, Evidence for a pancreatic procolipase and its activation by trypsin,FEBS Lett. 108:407–410.

    Article  PubMed  Google Scholar 

  • Bosner, M. S., Gulick, T., Riley, D. J. S., Spilburg, C. A., and Lange, L. G., III, 1988, Receptorlike function of heparin in the binding and uptake of neutral lipids,Proc.Natl.Acad.Sci.U.S.A. 85:7438–7442.

    Article  PubMed  CAS  Google Scholar 

  • Bosner, M. S., Gulick, T., Riley, D. J. S., Spilburg, C. A., and Lange, L. G., 1989, Heparin-modulated binding of pancreatic lipase and uptake of hydrolyzed triglycerides in the intestine,J.Biol.Chem. 264:20261–20264.

    PubMed  CAS  Google Scholar 

  • Bousset-Risso, M., Bonicel, J., and Rovery, M., 1985, Limited proteolysis of porcine pancreatic lipase. Lability of the Phe 335-Ala 336 bond towards chymotrypsin,FEBS Lett. 182:323–326.

    Article  PubMed  CAS  Google Scholar 

  • Brannon, P. M., 1990, Adaptation of the exocrine pancreas to diet,Annu.Rev.Nutr. 10:85–105.

    Article  PubMed  CAS  Google Scholar 

  • Breg, J. N., Sarda, L., Cozzone, P. J., Rugani, N., Boelens, R., and Kaptein, R., 1995, Solution structure of porcine pancreatic procolipase as determined from 1H homonuclear two-dimensional and three-dimensional NMR,Eur.J.Biochem. 227:663–672.

    Article  PubMed  CAS  Google Scholar 

  • Brockerhoff, H., and Jensen, R. G., 1974, Lipases, in;Lipolytic Enzymes, Academic Press, New York, pp. 25–175.

    Chapter  Google Scholar 

  • Brockman, H. L. 1984, General features of lipolysis: Reaction scheme, interfacial structure and experimental approaches, in:Lipases (B. Borgström and H. L. Brockman, eds.), Elsevier Science Publishers, Amsterdam, pp. 1–46.

    Google Scholar 

  • Brockman, H. L., Law, J. H., and Kézdy, F. J., 1973, Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads,J.Biol.Chem. 248:4965–4970.

    PubMed  CAS  Google Scholar 

  • Carriere, F., Barrowman, J. A., Verger, R., and Laugier, R., 1993, Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans,Gastroenterology 105:876–888.

    PubMed  CAS  Google Scholar 

  • Carrière, F., Bezzine, S., and Verger, R., 1997a, Molecular evolution of the pancreatic lipase and two related enzymes towards different substrate selectivities,J.Mol.Catal.B:Enzym. 3:55–64.

    Article  Google Scholar 

  • Carrière, F., Thirstrup, K., Hjorth, S., Ferrato, F., Nielsen, P. F., Withers-Martinez, C., Cambillau, C., Boel, E., Thim, L., and Verger, R., 1997b, Pancreatic lipase structure-function relationships by domain exchange,Biochem. 36:239–248.

    Article  Google Scholar 

  • Chapus, C., Rovery, M., Sarda, L., and Verger, R., 1988, Minireview on pancreatic lipase and colipase, Biochimie 70:1223–1234.

    Article  PubMed  CAS  Google Scholar 

  • Charles, M., Semeriva, M., and Chabre, M., 1980, Small-angle neutron scattering study of the association between porcine pancreatic colipase and taurodeoxycholate micelles,J.Mol.Biol. 139:297–317.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Bläckberg, L., Nilsson, Ã…., Sternby, B., and Hernell, O., 1994, Digestion of triacylglycerols containing long-chain polyenoic fatty acids in vitro by colipase-dependent pancreatic lipase and human milk bile saltstimulated lipase, Biochim. Biophys. Acta 1210:239–243.

    Article  PubMed  CAS  Google Scholar 

  • Cygler, M., Schrag, J. D., Sussman, J. L., Harel, M., Silman, I., Gentry, M. K., and Doctor, B. P., 1993, Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins,Protein,Sci. 2:366–382.

    Article  CAS  Google Scholar 

  • Dahim, M., Momsen, W. E., and Brockman, H. L., 1998, How colipase-fatty acid interactions mediate adsorption of pancreatic lipase to interfaces.Biochem. 37:8369–8377.

    Article  CAS  Google Scholar 

  • De la Maza, A., Manich, A. M., and Parra, J. L., 1997, Intermediate aggregates resulting in the interaction of bile salt with liposomes studied by transmission electron microscopy and light scattering techniques,J.Microsc. (Oxford)186:75–83.

    Article  Google Scholar 

  • Derewenda, Z. S., and Sharp, A. M., 1993, News from the interface: The molecular structures of triacylglyceride lipases,Trends Biochem.Sci. (Pers.Ed.) 18:20–25.

    Article  PubMed  CAS  Google Scholar 

  • DiMagno, E. P., and Layer, P., 1993, Human exocrine pancreatic enzyme secretion, in:The Pancreas:Biology,Pathobiology and Disease, 2nd edition (V. L. W. Go, E. P. DiMagno, J. D. Gardner, E. Lebenthal, H. A. Reber, and G. A. Scheele, eds.), Raven Press, New York, pp. 275–300.

    Google Scholar 

  • DiMagno, E. P., Go, V. L. W., and Summerskill, W. H. J., 1973, Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency,New Engl.J.Med. 288:813–815.

    Article  PubMed  CAS  Google Scholar 

  • Drent, M. L., Larsson, I., William-Olsson, T., Quaade, F., Czubayko, F., von Bergmann, K., Strobel, W., Sjöström, I., and van der Veen, E. A., 1995, Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity: A multiple dose study,Int.J.Obes. 19:221–226.

    CAS  Google Scholar 

  • Egloff, M.-P., Sarda, L., Verger, R., Cambillau, C., and van Tilbeurgh, H., 1995a, Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase, Protein Sci. 4:44–57.

    Article  PubMed  CAS  Google Scholar 

  • Egloff, M.-P., Marguet, F., Buono, G., Verger, R., Cambillau, C., and van Tilbeurgh, H., 1995b, The 2.46 Ã… resolution structure of the pancreatic lipase-colipase complex inhibited by a Cll alkyl phosphonate,Biochem. 34:2751–2762.

    Article  CAS  Google Scholar 

  • Erlanson-Albertsson, C., 1983, The interaction between pancreatic lipase and colipase: A protein-protein interaction regulated by a lipid,FEBS Lett. 162:225–229.

    Article  PubMed  CAS  Google Scholar 

  • Erlanson-Albertsson, C., 1992, Pancreatic colipase. Structural and physiological aspects,Biochim.Biophys.Acta 1125:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Erlanson-Albertsson, C., and York, D., 1997, Enterostatin-Apeptide regulating fat intake,Obesity Res. 5:360–372.

    Article  CAS  Google Scholar 

  • Figarella, C., De Caro, A., Leupold, D., and Poley, j. R., 1980, Congenital pancreatic lipase deficiency,J.Pediatr. 96:412–416.

    Article  PubMed  CAS  Google Scholar 

  • Gargouri, Y., Julien, R., Bois, A. G., Verger, R., and Sarda, L., 1983, Studies on the detergent inhibition of pancreatic lipase activity,J.Lipid Res. 24:1336–1342.

    PubMed  CAS  Google Scholar 

  • Gargouri, Y., Pieroni, G., Riviere, C., Lowe, P. A., Sauniere, J.-F., Sarda, L., and Verger, R., 1986a, Importance of human gastric lipase for intestinal lipolysis: An in vitro study,Biochim.Biophys.Acta 879:419–423.

    Article  PubMed  CAS  Google Scholar 

  • Gargouri, Y., Pieroni, G., Riviere, C., Sarda, L., and Verger, R., 1986b, Inhibition of lipases by proteins: A binding study using dicaprin monolayers,Biochem. 25:1733–1738.

    Article  CAS  Google Scholar 

  • Ghishan, F. K., Moran, J. R., Durie, P. R., and Greene, H. L., 1984, Isolated congenital lipase-colipase deficiency,Gastroenterology 86:1580–1582.

    PubMed  CAS  Google Scholar 

  • Gillmor, S. A., Villaseñor, A., Fletterick, R., Sigal, E., and Browner, M. F., 1997, The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity,Nat.Struct.Biol. 4:1003–1009.

    Article  PubMed  CAS  Google Scholar 

  • Guy, O., and Figarella, C., 1981, The proteins of human pancreatic external secretion,Scand.J.Gastroenterol. 16:59–61.

    CAS  Google Scholar 

  • Havsteen, B. H., Varón Castellanos, R., Molina, M., García Meseguer, M. J., Valero, E., and García-Moreno, M., 1992, Kinetic theory of the action of lipases,J.Theor.Biol. .157:523–533.

    Article  CAS  Google Scholar 

  • Hermoso, J., Pignol, D., Kerfelec, B., Crenon, I., Chapus, C., and Fontecilla-Camps, J. C., 1996, Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex,J.Biol.Chem. 271:18007–18016.

    Article  PubMed  CAS  Google Scholar 

  • Hermoso, J., Pignol, D., Penel, S., Roth, M., Chapus, C., and Fontecilla-Camps, J. C., 1997, Neutron crystallographic evidence of lipase-colipase complex activation by a micelle,EMBO J. 16:5531–5536.

    Article  PubMed  CAS  Google Scholar 

  • Hernell, O., Staggers, J. E., and Carey, M. C., 1990, Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings,Biochem. 29:2041–2056.

    Article  CAS  Google Scholar 

  • Heuman, D. M., Bajaj, R. S., and Lin, Q., 1996, Adsorption of mixtures of bile salt taurine conjugates to lecithincholesterol membranes: Implications for bile salt toxicity and cytoprotection,J.Lipid Res. 37:562–573.

    PubMed  CAS  Google Scholar 

  • Hildebrand, H., Borgström, B., Békássy, A., Erlanson-Albertsson, C., and Helin, A., 1982, Isolated colipase deficiency in two brothers,Gut 23:243–246.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand, P., Petrig, C., Burckhardt, B., Ketterer, S., Lengsfeld, H., Fleury, A., Hadváry, P., and Beglinger, C., 1998, Hydrolysis of dietary fat by pancreatic lipase stimulates cholecystokinin release,Gastroenterology 114:123–129.

    Article  PubMed  CAS  Google Scholar 

  • Hirschi, K. K., Sabb, J. E., and Brannon, P. M., 1991, Effects of diet and ketones on rat pancreatic lipase in cultured acinar cells,J.Nutr. 121:1129–1134.

    PubMed  CAS  Google Scholar 

  • Holt, P. R., and Balint, J. A., 1993, Effects of aging on intestinal lipid absorption,Am. J. Physiol. 264:G1–G6.

    PubMed  CAS  Google Scholar 

  • Holtmann, G., Kelly, D. G., Sternby, B., and DiMagno, E. P., 1997, Survival of human pancreatic enzymes during small bowel transit. Effect of nutrients, bile acids, and enzymes,Am. J. Physiol. 36:G553–G558.

    Google Scholar 

  • Hui, D. Y., 1996, Molecular biology of enzymes involved with cholesterol ester hydrolysis in mammalian tissues,Biochim.Biophys.Acta 1303:1–14.

    Article  PubMed  Google Scholar 

  • Jain, M. K., and Berg, O. G., 1989, The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: Hopping versus scooting,Biochim.Biophys.Acta 1002:127–156.

    Article  PubMed  CAS  Google Scholar 

  • Jennens, M. L., and Lowe, M. E., 1994, A surface loop covering the active site of human pancreatic lipase influences interfacial activation and lipid binding,J.Biol.Chem. 41:25470–25474.

    Google Scholar 

  • Jennens, M. L., and Lowe, M. E., 1995, C-terminal domain of human pancreatic lipase is required for stability and maximal activity but not colipase reactivation,J.Lipid Res. 36:1029–1036.

    PubMed  CAS  Google Scholar 

  • Labourdenne, S., Brass, O., Ivanova, M., Cagna, A., and Verger, R., 1997, Effects of colipase and bile salts on the catalytic activity of human pancreatic lipase. A study using the oil drop tensiometer,Biochem. 36:3423–3429.

    Article  CAS  Google Scholar 

  • Larsson, A., and Erlanson-Albertsson, C., 1986, Effect of phosphatidylcholine and free fatty acids on the activity of pancreatic lipase-colipase, Biochim.Biophys.Acta 876:543–550.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, A., and Erlanson-Albertsson, C., 1991, The effect of pancreatic procolipase and colipase on pancreatic lipase activation,Biochim.Biophys.Acta 1083:283–288.

    Article  PubMed  CAS  Google Scholar 

  • Lee, P. C., and Lebenthal, E., 1993, Prenatal and postnatal development of the human exocrine pancreas, in:The Pancreas:Biology,Pathobiology and Disease, 2nd edition (V. L. W. Go, E. P. DiMagno, J. D. Gardner, E. Lebenthal, H. A. Reber, and F. A. Scheele, Eds.), Raven Press, New York, pp. 57–73.

    Google Scholar 

  • Lindstrom, M., Sternby, B., and Borgström, B., 1988, concerted action of human carboxyl ester lipase and pancreatic lipase during digestion in vitro:Importance of the physiochemical state of the substrate,Biochim.Biophys.Acta 959:178 -184.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, M. E., 1992, The catalytic site residues and interfacial binding of human pancreatic lipase, J.Biol Chem. 267:17069–17073.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., 1994, Pancreatic triglyceride lipase and colipase: Insights into dietary fat digestion,Gastroenterology 107:1524–1536.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., 1997a, Colipase stabilized the lid domain of pancreatic triglyceride lipase, J.Biol.Chem. 272:9–12.

    PubMed  CAS  Google Scholar 

  • Lowe, M. E., 1997b, Structure and function of pancreatic lipase and colipase, Annu.Rev.Nutr. 17:141–158.

    Article  PubMed  CAS  Google Scholar 

  • Manson, W. G., and Weaver, L. T., 1997, Fat digestion in the neonate,Arch.Dis.Child. 76:F 200–F 211.

    Google Scholar 

  • Marangoni, A. G., 1994, Enzyme kinetics of lipolysis revisited: The role of lipase interfacial binding,Biochem.Biophys.Res.Commun. 200:1321–1328.

    Article  PubMed  CAS  Google Scholar 

  • Maylie, M. F., Charles, M., Gache, C., and Desnuelle, P., 1971, Isolation and partial identification of a pancreatic colipase, Biochim.Biophys.Acta 229:286–289.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, J. C., Hundley, P., and Behnke, W. D., 1987, The role of aromatic side chain residues in micelle binding by pancreatic colipase. Fluorescence studies of the porcine and equine proteins,Biochem.J. 245:821–829.

    PubMed  CAS  Google Scholar 

  • Momsen, M. M., Dahim, M., and Brockman, H. L., 1997, Lateral packing of the pancreatic lipase cofactor, colipase, with phosphatidylcholine and substrates,Biochem. 36:10073–10081.

    Article  CAS  Google Scholar 

  • Momsen, W. E., and Brockman, H. L., 1976, Effects of colipase and taurodeoxycholate on the catalytic and physical properties of pancreatic lipase B at an oil-water interface,J.Biol.Chem. 251:378–383.

    PubMed  CAS  Google Scholar 

  • Momsen, W. E., and Brockman, H. L., 1981, The adsorption to and hydrolysis of 1,3-didecanoylglycerol monolayers by pancreatic lipase, J.Biol.Chem. 256:6913–6916.

    PubMed  CAS  Google Scholar 

  • Momsen, W. E., Smaby, J. M., and Brockman, H. L., 1979, Interfacial structure and lipase action. Characterization of taurodeoxycholate-didecanoylglycerol monolayers by physical and kinetic methods,J.Biol.Chem. 254:8855–8860.

    PubMed  CAS  Google Scholar 

  • Momsen, W. E., Momsen, M. M., and Brockman, H. L., 1995, Lipid structural reorganization induced by the pancreatic lipase cofactor, procolipase, Biochem. 34:7271–7281.

    Article  CAS  Google Scholar 

  • Moreau, H., Moulin, A., Gargouri, Y., Noël, J.-R, and Verger, R., 1991, Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate,Biochem. 30:1037–1041.

    Article  CAS  Google Scholar 

  • Morgan, R. G. H., Barrowman, J., and Borgström, B., 1969, The effect of sodium taurodesoxycholate and pH on the gel filtration behaviour of rat pancreatic protein and lipases,Biochim.Biophys.Acta 175:65–75.

    Article  PubMed  CAS  Google Scholar 

  • Muderhwa, J. M., and Brockman, H. L., 1992a, Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction,J.Biol.Chem. 267:24184–24192.

    PubMed  CAS  Google Scholar 

  • Muderhwa, J. M., and Brockman, H. L., 1992b, Regulation of fatty acid 18O exchange catalyzed by pancreatic carboxylester lipase. 2. Effects of lateral lipid distribution in mixtures with phosphatidylcholine,Biochem. 31:149–155.

    Article  CAS  Google Scholar 

  • Nichols, J. W., 1986, low concentrations of bile salts increase the rate of spontaneous phospholipid transfer between vesicles,Biochem. 25:4596–4601.

    Article  CAS  Google Scholar 

  • O’Connor, C. J., Ch’ng, B. T., and Wallace, R. G., 1983, Studies in bile salt solutions. 1. Surface tension evidence for a stepwise aggregation model,J.Colloid Interface Sci. 95:410–419.

    Article  Google Scholar 

  • Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., Schrag, J., Sussman, J. L., Verschueren, K. H. G., and Goldman, A., 1992, the α/β hydrolase fold,Protein Eng. 5:197–211.

    Article  PubMed  CAS  Google Scholar 

  • Panaiotov, I., Ivanova, M., and Verger, R., 1997, Interfacial and temporal organization of enzymatic lipolysis,Curr.Opin.Colloid Interface Sci. 2:517–525.

    Article  CAS  Google Scholar 

  • Patton, J. S., 1981, Gastrointestinal lipid digestion, in:Physiology of the Gastrointestinal Tract (L. R. Johnson, ed.), Raven Press, New York, pp. 1123–1146.

    Google Scholar 

  • Peters, G. H., Toxvaerd, S., Olsen, O. H., and Svendsen, A., 1995, Modeling of complex biological systems. 2. Effect of chain length on the phase transitions observed in diglyceride monolayers,Langmuir 11; 4072–4081.

    Article  CAS  Google Scholar 

  • Pieroni, G., and Verger, R., 1979, Hydrolysis of mixed monomolecular films of triglyceride/lecithin by pancreatic lipase, J.Biol.Chem. 254:10090–10094.

    PubMed  CAS  Google Scholar 

  • Pieroni, G., Gargouri, Y., Sarda, L., and Verger, R., 1990, Interactions of lipases with lipid monolayers. Facts and fictions,Adv.Colloid Interface Sci. 32:341–378.

    Article  CAS  Google Scholar 

  • Ransac, S., Rivière, C, Soulié, J. M., Gancet, C., Verger, R., and de Haas, G. H., 1990, Competitive inhibition of lipolytic enzymes. I. Akinetic model applicable to water-insoluble competitive inhibitors,Biochim.Biophys.Acta 1043:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Ransac, S., Carrière, F., Rogalska, E., Verger, R., Marguet, F., Buono, G., Melo, E. P., Cabral, J. M. S., Egloff, M.-P., van Tilbeurgh, H., and Cambillau, C., 1996, The kinetics, specificities and structural features of UpasesNATO ASI Ser,Ser.H. 96:265–303.

    CAS  Google Scholar 

  • Rössner, H., Barkeling, B., Erlanson-Albertsson, C., Larsson, P., and Wählin-Boll, E., 1995, Intravenous enterostatin does not affect single meal food intake in man,Appetite 24:37–42.

    Article  PubMed  Google Scholar 

  • Rubin, B., 1994, Grease pit chemistry exposed,Nat.Struct.Biol. 1:568–572.

    Article  PubMed  CAS  Google Scholar 

  • Rudd, E. A., and Brockman, H. L., 1984, Pancreatic carboxyl ester lipase (cholesterol esterase), in:Lipases, (B. Borgström and H. L. Brockman, eds.), Elsevier Science Publishers, Amsterdam, pp. 185–204.

    Google Scholar 

  • Saxton, M. J., 1994, Anomalous diffusion due to obstacles: A Monte Carlo study,Biophys.J. 66:394–401.

    Article  PubMed  CAS  Google Scholar 

  • Scheele, G. A., 1993, Regulation of pancreatic gene expression in response to hormones and nutritional substrates, in:The Pancreas:Biology,Pathobiology and Disease, 2nd edition (V. L. W. Go, E. P. DiMagno, J. D. Gardner, E. Lebenthal, H. A. Reber, and G. A. Scheele, eds.), Raven Press, New York, pp. 103–120.

    Google Scholar 

  • Schmit, G. D., Momsen, M. M., Owen, W. G., Naylor, S., Tomlinson, A., Wu, G., Stark, R. E., and Brockman, H. L., 1996, The affinities of procolipase and colipase for interfaces are regulated by lipids,Biophys.J. 71:3421–3429.

    Article  PubMed  CAS  Google Scholar 

  • Schram, V., Tocanne, J.-F., and Lopez, A., 1994, Influence of obstacles on lipid lateral diffusion: Computer simulation of FRAP experiments and application to proteoliposomes and biomembranes,Eur.Biophys.J. 23:337–348.

    Article  PubMed  CAS  Google Scholar 

  • Sémériva, M., and Desnuelle, P., 1979, Pancreatic lipase and colipase. An example of heterogeneous biocatalysis,Adv.Enzymol.Rel.Areas Mol.Biol. 48:319–371.

    Google Scholar 

  • Small, D. M., 1970, Surface and bulk interactions of lipids and water with a classification of biologically active lipids based on these interactions,Fed.Proc. 29:1320–1326.

    PubMed  CAS  Google Scholar 

  • Small, D. M., Miller, K., Cistola, D., Ginsburg, G., Parks, J., Atkinson, D., and Hamilton, J. A., 1983, Physicochemical studies on the position of molecules in emulsions and membranes,Falk Symp. 33; 25–30.

    CAS  Google Scholar 

  • Sörhede, M., Mulder, H., Mei, J., Sundler, F., and Erlanson-Albertsson, C., 1996, Procolipase is produced in the rat stomach-A novel source of enterostatin,Biochim.Biophys.Acta 1301:207–212.

    Article  PubMed  Google Scholar 

  • Staggers, J. E., Hernell, O., Stafford, R. J., and Carey, M. C, 1990, Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and adsorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings,Biochem. 29:2028–2040.

    Article  CAS  Google Scholar 

  • Tani, H., Ohishi, H., and Watanabe, K., 1994, Purification and characterization of proteinous inhibitor of lipase from heat flour,J.Agric.Food Chem. 42:2382–2385.

    Article  CAS  Google Scholar 

  • Thomson, A.B.R., and Dietschy, J. M., 1981, Intestinal lipid absorption:Major extracellular and intracellular events, in:Physiology of the Gastrointestinal Tract (L. R. Johnson, ed.), Raven Press, New York, pp. 1147–1220.

    Google Scholar 

  • Tian, Q., Nagase, H., York, D. A., and Bray, G. A., 1994, Vagal-central nervous system interactions modulate the feeding response to peripheral enterostatin,Obesity Res. 2:527–534.

    Article  CAS  Google Scholar 

  • Tsujita, T., Muderhwa, J. M., and Brockman, H. L., 1989, Lipid-lipid interactions as regulators of carboxylester lipase activity,J.Biol.Chem. 264:8612–8618.

    PubMed  CAS  Google Scholar 

  • van Tilbeurgh, H., Sarda, L., Verger, R., and Cambillau, C., 1992, Structure of the pancreatic lipase-colipase complex,Nature 359:159–162.

    Article  PubMed  Google Scholar 

  • van Tilbeurgh, H., Gargouri, Y., Dezan, C., Egloff, M.-P, Nésa, M. P., Ruganie, N., Sarda, L., Verger, R., and Cambillau, C. 1993a, Crystallization of pancreatic procolipase and of its complex with pancreatic lipase, J.Mol.Biol. 229:552–554.

    Article  PubMed  Google Scholar 

  • van Tilbeurgh, H., Egloff, M.-P., Martinez, C., Rugani, N., Verger, R., and Cambillau, C., 1993b, Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X ray crystallography,Nature 362:814–820.

    Article  PubMed  Google Scholar 

  • Verger, R., 1980, Enzyme kinetics of lipolysis,Methods Enzymol. 64:340–392.

    Article  PubMed  CAS  Google Scholar 

  • Verger, R. 1984, Pancreatic lipase, in:Lipases (B. Borgström and H. L. Brockman, eds.), Elsevier Science Publisher, Amsterdam, pp. 83–150.

    Google Scholar 

  • Verger, R., 1997, Interfacial activation of lipases: Facts and artifacts,Trends in Biotechnol. 15:32–38.

    Article  CAS  Google Scholar 

  • Verger, R., and Pieroni, G., 1986, Monomolecular layers: A bio-topology in the past, present and future, in:Lipids and Membranes:Past,Present and Future (J. A. F. op den Kamp, B. Roelofsen, and K. W. A. Wirtz, eds.), Elsevier Science Publishers B.V., Amsterdam, pp. 153–170.

    Google Scholar 

  • Verger, R., Rietsch, J., van Dam-Mieras, M. C. E., and de Haas, G. H., 1976, Comparative studies of lipase and phospholipase A2 acting on substrate monolayers,J.Biol.Chem. 251:3128–3133.

    PubMed  CAS  Google Scholar 

  • Verger, R., Aoubala, M., Carrière, F., Ransac, S., Dupuis, L., De Caro, J., Ferrato, F., Douchet, I., Laugier, R., and de Caro, A., 1996, Regulation of lumen fat digestion: Enzymic aspects,Proc.Nutr.Soc 55:5-18:7.

    Article  PubMed  Google Scholar 

  • Wang, C.-S., and Hartsuck, J. A., 1993, Bile salt-activated lipase. A multiple function lipolytic enzyme,Biochim.Biophys.Acta 1166:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Wickham, M., Garrood, M., Leney, J., Wilson, P. D. G., and Fillery-Travis, A., 1998, Modification of a phospholipid stabilized emulsion interface by bile salt: Effect on pancreatic lipase activity,J.Lipid Res. 39:623–632.

    PubMed  CAS  Google Scholar 

  • Wieloch, T., Borgström, B., Pieroni, G., Pattus, F., and Verger, R., 1982, Product activation of pancreatic lipase. Lipolytic enzymes as probes for lipid/water interfaces,J.Biol.Chem. 257:11523–11528.

    PubMed  CAS  Google Scholar 

  • Winkler, F. K., D’Arcy, A., and Hunziker, W., 1990, Structure of human pancreatic lipase, Nature 343:771–774.

    Article  PubMed  CAS  Google Scholar 

  • Withers-Martinez, C., Carrière, F., Verger, R., Bourgeois, D., and Cambillau, C., 1996, A pancreatic lipase with a phospholipase Al activity: Crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig,Structure 4:1363–1374.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L.-Y., Kuksis, A., and Myher, J. J., 1990, Lipolysis of menhaden oil triacylglycerols and the corresponding fatty acid alkyl esters by pancreatic lipase in vitro: A reexamination,J.Lipid Res. 31:137–147.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brockman, H. (2001). Pancreatic Lipase. In: Mansbach, C.M., Tso, P., Kuksis, A. (eds) Intestinal Lipid Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1195-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1195-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5435-2

  • Online ISBN: 978-1-4615-1195-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics