Skip to main content

The Measurement of Photon Number States Using Cavity QED

  • Chapter
Macroscopic Quantum Coherence and Quantum Computing

Abstract

In two recent experiments it was demonstrated that number or Fock states can be generated. Two types of experiments have been performed. In the first one the number states are achieved in steady state via the socalled trapping states of the micromaser field. In the second experiment the number states were generated in a dynamical experiment by state reduction. In the latter case the generated field was afterwards probed by observing the dynamics of a probe atom in the field. This is the first unambiguous measurement of the purity of number states in cavity quantum electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Meschede, H. Walther, and G. Müller, Phys. Rev. Lett.54, 551 (1985).

    Article  ADS  Google Scholar 

  2. E.T. Jaynes and F.W. Cummings, Proc. IEEE.51, 89 (1963).

    Article  Google Scholar 

  3. G. Rempe, F. Schmidt-Kaler, and H. Walther, Phys. Rev. Lett.64, 2783 (1990).

    Article  ADS  Google Scholar 

  4. G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett.58, 353 (1987).

    Article  ADS  Google Scholar 

  5. G. Raithel, O. Benson, and H. Walther, Phys. Rev. Lett.75, 3446 (1995).

    Article  ADS  Google Scholar 

  6. O. Benson, G. Raithel, and H. Walther, Phys. Rev. Lett.72, 3506 (1994).

    Article  ADS  Google Scholar 

  7. B.-G. Englert, M. Löffler, O. Benson, B. Varcoe, M. Weidinger, and H. Walther, Fortschr. Phys.46, 897 (1998).

    Article  Google Scholar 

  8. D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett.77, 4281–4285 (1996).

    Article  ADS  Google Scholar 

  9. M. Weidinger, B.T.H. Varcoe, R. Heerlein, and H. Walther, Phys. Rev. Lett.82, 3795–3798 (1999)

    Article  ADS  Google Scholar 

  10. B. T. H. Varcoe, S. Brattke, B.-G. Englert, and H. Walther, Fortschr. Phys.48, 679 (2000).

    Article  Google Scholar 

  11. B. T. H. Varcoe, S. Brattke, and H. Walther, J. Opt. B.2154 (2000).

    Article  ADS  Google Scholar 

  12. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond and S. Haroche, Nature (London)400, 239 (1999).

    Article  ADS  Google Scholar 

  13. P. Meystre, G. Rempe, and H. Walther, Opt. Lett.13, 1078–1080 (1988).

    Article  ADS  Google Scholar 

  14. J. Krause, M.O. Scully, and H. Walther, Phys. Rev. A.36, 4547–4550 (1987)

    Article  ADS  Google Scholar 

  15. E. Wehner, R. Seno, N. Sterpi, B.-G. Englert and H. Walther, Opt. Commun.110, 655 (1994).

    Article  ADS  Google Scholar 

  16. B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther, Nature (London)403, 743 (2000).

    Article  ADS  Google Scholar 

  17. S. Brattke, B.-G. Englert, B. T. H. Varcoe, and H. Walther, J. Mod. Opt. (in print) (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brattke, S., Varcoe, B., Walther, H. (2001). The Measurement of Photon Number States Using Cavity QED. In: Averin, D.V., Ruggiero, B., Silvestrini, P. (eds) Macroscopic Quantum Coherence and Quantum Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1245-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1245-5_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5459-8

  • Online ISBN: 978-1-4615-1245-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics