Skip to main content

Fluorescence Spectroscopic Studies on Structure and Function of Lipolytic Enzymes

  • Chapter
Supramolecular Structure and Function 7

Abstract

Lipases and esterases are lipolytic enzymes hydrolyzing hydrophobic long- and short-chain carboxylic acid esters, respectively (Verger, 1997). Lipases play an important role in intracellular lipid metabolism and extracellular lipid degradation. Information on the biological function of esterases is rather scarce. In organic chemistry these proteins represent about 25% of the biocatalysts currently used for stereo- and regioselective hydrolysis or esterification of synthetic substrates (Faber, 1992). Either crude enzyme preparations (e.g. pancreatic lipase) or a growing number of „pure" recombinant proteins are being employed for such purposes (Schmid and Verger, 1998). Knowledge of qualitative and quantitative enzyme composition is essential (Schmid and Verger, 1998) though not always available for crude enzymes. On the other hand, the fraction of active enzyme is an important parameter for (electrophoretically) pure (recombinant) lipases or esterases in monomeric or crystallized form. Both analytical requirements are not easy to meet using state of the art procedures (Schmid and Verger, 1998). Basic information on structure-function relationships of lipases and esterases has been obtained by X-ray crystallography (Anthonsen et al., 1995). However, information on lipases in solution and their interactions with their (supramolecular) substrates is scarce. High-resolution NMR spectroscopy of these systems requires high protein concentrations and, at the same time, a minimum of protein self-association (Anthonsen et al., 1994). Only the three-dimensional structure of cutinase has been solved by NMR to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthonsen H. W., Baptista A., Drablos F., Martel P., and Petersen S., 1994, The blind watchmaker and rational protein engineering. J. Biotech. 36: 185–220.

    Article  CAS  Google Scholar 

  • Anthonsen M. W., Baptista A., Orablos F., Matel P., Petersen S. B., Sebastiao M., and Vaz L., 1995, Lipases and Esterases: a review of their sequences, structure and evolution. Biotech.Annu. Rew. (M. R. El-Gewely, ed.) pp. 319–371.

    Google Scholar 

  • Chen J. C.-H., Miercke L. J. W., Krucinski J., Starr J. R., Saenz G., Wang X., Duque M., Graupner M., Stütz H., Wicher I., Zechner R., Paltauf F., and Hermetter A., 1996, New fluorogenic triacylglycerol analogs as substrates for the determination and chiral discrimination of lipase activities. J. Lipid. Res. 37: 868–876.

    Google Scholar 

  • Faber K., 1992, In Biotransformation in Organic Chemistry Springer, Berlin Heidelberg.

    Book  Google Scholar 

  • Graupner M., Haalck L., Spener F., Paltauf F., and Hermetter A., 1997, Molecular dynamics of microbial lipases in different solubilization systems as determined phase-resolved fluorometry. In Ultrafast Spectroscopy.(O. Svelto, S. de Silvestri, and G. Denardo, eds.) Plenum Press, New York, pp. 531 - 533.

    Google Scholar 

  • Graupner M., Haalck L., Spener F., Lindner H., Glatter 0., Paltauf F. and Hermetter A., 1999,Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence. Biophys.J. 77: 493 - 504.

    Article  PubMed  CAS  Google Scholar 

  • Hermetter A., Paltauf F., Zenzmaier E., Schlacher A., Schwab H., and Faber K., 1998, Fluorescence screening for lipolytic enzymes. In New Frontiers for Microbial Catalysts (K. Kieslich, C. P. Van der Beck, J. A. M. De Bout, and W. J. J. Van den Tureel, eds), Elsevier, Amsterdam, pp. 53–60.

    Google Scholar 

  • Hermetter A., 1998, Lipase assay based on a novel fluorogenic alkyldiacylglycerol substrate. In Methods in Molecular Biology: Lipase and Phospholipase Protocols (M.H. Doolittle and K. Reue, eds.), Humana Press, Inc., Totowa, NJ, 109: 19–29.

    Chapter  Google Scholar 

  • Lakowicz J. R., 1986, Principles of fluorescence spectroscopy, Plenum Press, New York and London.

    Google Scholar 

  • Lang D.A., Mannesse M. L. M., de Haas G.H., Verheij M. M., and Dijkstra B. W., 1998, Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Eur. J.Biochem. 254: 333–340.

    Article  PubMed  CAS  Google Scholar 

  • Scheib H., Pleiss J., Kovac A., Paltauf F., and Schmid K. D., Steroselectivity of Mucorale lipases towards triradylglycerols - a simple solution to a complex problem. Protein Sci., in press.

    Google Scholar 

  • Schmid R.D. and Verger R., 1998, Lipasen: Grenzflächenenzyme mit attraktiven Anwendungen. Angew. Chemie 110: 1694–1720.

    Article  Google Scholar 

  • Scholze H., Stütz H., Paltauf F. and Hermetter A., 1999, Fluorescent inhibitors for the qualitative and quantitative analysis of lipolytic enzymes. Anal. Biochem. 276: 72 - 80

    Article  PubMed  CAS  Google Scholar 

  • Spilburg C. A., Lange L. G., Ellsworth J. L., and Stroud R.M., 1997, Structure of Bovine Pancreatic Cholesterol Esterase at 1.6 Å: Novel Structural Features Involved in Lipase Activation. Biochemistry 37: 5107–5117.

    Google Scholar 

  • Stadler P., Zandonella G., Haalck L., Spener F., Hermetter A., and Paltauf F., 1996, Inhibition of microbial Upases with stereoisomeric triradylglycerol analog phosphonates. Biochim. Biophys. Acta 1304: 229–244.

    Article  PubMed  CAS  Google Scholar 

  • Verger R., 1997, „Interfacial Activation“ of Lipases: Facts and Artifacts.TIBTECH 15: 32–38.

    Article  CAS  Google Scholar 

  • Zanonella G., Haalck L., Spener F., Faber K., Paltauf F.and Hermetter A., 1995, Inversion of Lipase Stereospecifity for Fluorogenic Alkyldiacyl Glycerols. Effect of Substrate Solubilization. Eur. J. Biochem. 231: 50–55.

    Article  Google Scholar 

  • Zandonella G., Stadler P., Haalck L., Spener F., Paltauf F. and Hermetter A., 1999, Interaction of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J.Biochem. 262: 63 - 69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hermetter, A., Mayer, B., Scholze, H., Zenzmaier, E., Graupner, M. (2001). Fluorescence Spectroscopic Studies on Structure and Function of Lipolytic Enzymes. In: Pifat-Mrzljak, G. (eds) Supramolecular Structure and Function 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1363-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1363-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5517-5

  • Online ISBN: 978-1-4615-1363-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics