Skip to main content

Role of Ran GTPase in RNA Processing and Export of RNA from the Nucleus to the Cytosol: Insights from Budding Yeast

  • Chapter
The Small GTPase Ran

Abstract

The Ran GTPase functions directly in nucleus/cytosol exchange, microtubule and spindle assembly, and likely other processes. This chapter focuses on use of the budding yeast (Saccharomyces cerevisiae) model system to delineate the in vivo roles of the Ran pathway in the export of tRNAs, ribosomes, and mRNA from the nucleus to the cytosol. Emphasis is placed upon the complex multiple and overlapping pathways that exist and possible mechanisms by which the Ran cycle may respond to environmental cues to assure that nuclear/cytosol exchange is coordinated with cellular metabolism. The data support direct roles for Ran in tRNA and ribosome nuclear export, but it is not clear whether Ran functions directly in mRNA nuclear export.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi M, Clark MW, Vijayraghavan U, Abelson J (1990) A yeast mutant, PRP20, altered in mRNA metabolism and maintenance of the nuclear structure, is defective in a gene homologous to the human gene RCC1 which is involved in the control of chromosome condensation. Mol Gen Genet 224, 72–80

    PubMed  CAS  Google Scholar 

  • Aitchison JD, Rout MP (2000) The road to ribosomes. Filling potholes in the export pathway. J Cell Biol 151, F23–26

    PubMed  CAS  Google Scholar 

  • Arnberg DC, Goldstein AL, Cole CN (1992) Isolation and characterization of RATI: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev 6, 1173–1189

    Google Scholar 

  • Arnberg DC, Fleischmann M, Stagljar I, Cole CN, Aebi M (1993) Nuclear PRP20 protein is required for mRNA export. EMBO J 12, 233–241.

    Google Scholar 

  • Arts G J, Fornerod M, Mattaj IW (1998a) Identification of a nuclear export receptor for tRNA. CurrBiol 8, 305–314

    Google Scholar 

  • Arts GJ, Kuersten S, Romby P, Ehresmann B, Mattaj IW. (1998b) The role of exportin-t in selective nuclear export of mature tRNAs. EMBO J 17, 7430–7441

    Google Scholar 

  • Azad AK, Stanford DR, Sarkar S, Hopper AK (2001) Role of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export. Mol. Biol. Cell 12, 1381–1392

    CAS  Google Scholar 

  • Becker J, Melchior F, Gerke V, Bischoff FR, Ponstingl H, Wittinghofer A (1995) RNA1 encodes a GTPase-activating protein specific for Gsplp, the Ran/TC4 homologue of Saccharomyces cerevisiae. J Biol Chem 270, 11860–11865

    PubMed  CAS  Google Scholar 

  • Belhumeur P, Lee A, Tarn R, DiPaolo T, Fortin N, Clark MW (1993) GSP1 and GSP2, genetic suppressors of the prp20-l mutant in Saccharomyces cerevisiae: GTP-binding proteins involved in the maintenance of nuclear organization. Mol Cell Biol 13, 2152–2161

    PubMed  CAS  Google Scholar 

  • Ben-Efraim I, Gerace L (2001) Gradient of increasing affinity of importin beta for nucleo-porins along the pathway of nuclear import. J Cell Biol 152, 411–418

    PubMed  CAS  Google Scholar 

  • Bischoff FR, Görlich D (1997) RanBPl is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett 419, 249–254

    PubMed  CAS  Google Scholar 

  • Bischoff FR, Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82

    PubMed  CAS  Google Scholar 

  • Bischoff FR, Maier G, Tilz G, Ponstingl H (1990) A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation. Proc Natl Acad Sei USA 87, 8617–8621

    CAS  Google Scholar 

  • Bischoff FR, Krebber H, Kempf T, Hermes I, Ponstingl H (1995) Human RanGTPase-activating protein RanGAPl is a homologue of yeast Rnalp involved in mRNA processing and transport. Proc Natl Acad Sei USA 92, 1749–1753

    CAS  Google Scholar 

  • Clark KL, Sprague GF (1989) Yeast pheromone response pathway: characterization of a suppressor that restores mating to receptorless mutants. Mol Cell Biol, 9 2682–2694

    PubMed  CAS  Google Scholar 

  • Cole CN (2000) mRNA export: the long and winding road. Nat Cell Biol. 2, E55–58

    PubMed  CAS  Google Scholar 

  • Corbett AH, Silver PA (1996) The NTF2 gene encodes an essential, highly conserved protein that functions in nuclear transport in vivo. J Biol Chem 277, 18477–18484

    Google Scholar 

  • Corbett AH, Koepp DM, Schlenstedt G, Lee MS, Hopper AK, Silver PA (1995) Rnalp, a Ran/TC4 GTPase activating protein, is required for nuclear import. J Cell Biol 130, 1017–1026

    PubMed  CAS  Google Scholar 

  • Cullen BR (2000) Nuclear RNA export pathways. Mol Cell Biol 20, 4181–4187

    PubMed  CAS  Google Scholar 

  • Demeter J, Morphew M, Sazer S (1995) A mutation in the RCC1-related protein piml results in nuclear envelope fragmentation in fission yeast. Proc Natl Acad Sei USA 92, 1436–1440

    CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686

    PubMed  CAS  Google Scholar 

  • De Robertis EM, Black P, Nishikura K (1981) Intranuclear location of the tRNA splicing enzymes. Cell 23, 89–93

    PubMed  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Bio-chem Sei 16, 478–481

    CAS  Google Scholar 

  • Dworetzky SI, Lanford RE, Feldherr CM (1988) The effects of variations in the number and sequence of targeting signals on nuclear uptake. J Cell Biol 107, 1279–1287

    PubMed  CAS  Google Scholar 

  • Feng W, Benko AL, Lee JH, Stanford DR, Hopper AK (1999) Antagonistic effects of NES and NLS motifs determine S. cerevisiae Rnalp subcellular distribution. J Cell Sei 112, 339–347

    CAS  Google Scholar 

  • Floer M, Blobel G, Rexach M (1997) Disassembly of RanGTP-karyopherin beta complex, an intermediate in nuclear protein import. J Biol Chem 272, 19538–19546

    PubMed  CAS  Google Scholar 

  • Forrester W, Stutz F, Rosbash M, Wickens M (1992) Defects in mRNA 3’-end formation, transcription initiation, and mRNA transport associated with the yeast mutation prp20: possible coupling of mRNA processing and chromatin structure. Genes Dev 6, 1914–1926

    PubMed  CAS  Google Scholar 

  • Gadal O, Strauß D, Kessl J, Trumpower B, Tollervey D, Hurt E (2001) Nuclear export of 60S ribosomal subunits depends on Xpolp and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein RpllOp. Mol Cell Biol 27,3405–3415

    Google Scholar 

  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15, 607–660

    PubMed  Google Scholar 

  • Görlich D, Dabrowski M, Bischoff FR, Kutay U, Bork P, Hartmann E, Prehn S, Izaurralde E (1997) A novel class of RanGTP binding proteins. J Cell Biol 138, 65–80

    PubMed  Google Scholar 

  • Grosshans H, Hurt E, Simos G (2000a) An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev 14, 830–840

    Google Scholar 

  • Grosshans H, Simos G, Hurt E (2000b) Review: transport of tRNA out of the nucleus-direct channeling to the ribosome? J Struct Biol 129, 288–294

    Google Scholar 

  • Hellmuth K, Lau DM, Bischoff FR, Künzler M, Hurt E, Simos G (1998) Yeast Loslp has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol Cell Biol 18, 6374–6386

    PubMed  CAS  Google Scholar 

  • Hetzer M, Mattaj IW (2000) An ATP-dependent, Ran-independent mechanism for nuclear import of the U1A and U2B” spliceosome proteins. J Cell Biol 148, 293–303

    PubMed  CAS  Google Scholar 

  • Ho JH, Johnson AW (1999) NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol Cell Biol 19, 2389–2399

    PubMed  CAS  Google Scholar 

  • Ho JH, Kallstrom G, Johnson AW (2000) Nmd3p is a Crmlp-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol 151, 1057–1066

    PubMed  CAS  Google Scholar 

  • Hopper AK (1998) Nuclear functions charge ahead. Science 282, 2003–2004

    PubMed  CAS  Google Scholar 

  • Hopper AK (1999) Nucleocytoplasmic transport: Inside out regulation. Curr Biol 9, R803–806

    PubMed  CAS  Google Scholar 

  • Hopper AK, Martin NC (1992) Processing of yeast cytoplasmic and mitochondrial precursor tRNAs, In The Molecular Biology of the Yeast Saccharomyces: Gene Expression, Vol II, Jones EW, Pringle JR, Broach JR, eds. (Cold Spring Harbor Laboratory Press), 99–141

    Google Scholar 

  • Hopper AK, Banks F, Evangelides V (1978) A yeast mutant which accumulates precursor tRNAs. Cell 14, 211–219

    PubMed  CAS  Google Scholar 

  • Hopper AK, Schultz LD, Shapiro RA (1980) Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs. Cell 19, 741–751.

    PubMed  CAS  Google Scholar 

  • Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell Biol 111, 309–321

    PubMed  CAS  Google Scholar 

  • Hurt DJ, Wang SS, Lin YH, Hopper AK (1987) Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing. Mol Cell Biol 7, 1208–1216

    PubMed  CAS  Google Scholar 

  • Hurt E, Hannus S, Schmelzt B, Lau D, Toilervey D, Simos G (1999) A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. J Cell Biol 144,389–401

    PubMed  CAS  Google Scholar 

  • Hutchison HT, Hartwell LH, McLaughlin CS (1969) Temperature-sensitive yeast mutant defective in ribonucleic acid production. J Bacteriol 99, 807–814

    PubMed  CAS  Google Scholar 

  • Jäkel S, Görlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17, 4491–502

    PubMed  Google Scholar 

  • Jarmolowski A, Boelens WC, Izaurralde E, Mattaj IW (1994) Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol 124, 627–635

    PubMed  CAS  Google Scholar 

  • Kadowaki T, Zhao Y, Tartakoff AM (1992) A conditional yeast mutant deficient in mRNA transport from nucleus to cytoplasm. Proc Natl Acad Sei USA 89, 2312–2316

    CAS  Google Scholar 

  • Kadowaki T, Goldfarb D, Spitz LM, Tartakoff AM, Ohno M (1993) Regulation of RNA processing and transport by a nuclear guanine nucleotide release protein and members of the Ras superfamily. EMBO J 12, 2929–2937

    PubMed  CAS  Google Scholar 

  • Kaffman A, Rank NM, O’Neill EM, Huang LS, O’Shea EK (1998) The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396, 482–486

    PubMed  CAS  Google Scholar 

  • Knapp G, Beckmann JS, Johnson PF, Fuhrman SA, Abelson J (1978) Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14, 221–236

    PubMed  CAS  Google Scholar 

  • Koepp DM, Wong DH, Corbett AH, Silver PA (1996) Dynamic localization of the nuclear import receptor and its interactions with transport factors. J Cell Biol 133, 1163–1176

    PubMed  CAS  Google Scholar 

  • Krebber H, Taura T, Lee MS, Silver PA (1999) Uncoupling of the hnRNP Npl3p from mRNAs during the stress-induced block in mRNA export. Genes Dev 13, 1994–2004

    PubMed  CAS  Google Scholar 

  • Künzler M, Gerstberger T, Stutz F, Bischoff FR, Hurt E (2000) Yeast Ran-binding protein 1 (Yrbl) shuttles between the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (XPOIndependent pathway. Mol Cell Biol 20, 4295–4308

    PubMed  Google Scholar 

  • Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Görlich D (1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell 1, 359–369

    PubMed  CAS  Google Scholar 

  • Lane CM, Cushman I, Moore MS (2000) Selective disruption of nuclear import by a functional mutant nuclear transport carrier. J Cell Biol 151, 321–332

    PubMed  CAS  Google Scholar 

  • Lee A, Tarn R, Belhumeur P, DiPaolo T, Clark MW (1993) Prp20, the Saccharomyces cerevisiae homolog of the regulator of chromosome condensation, RCC1, interacts with double-stranded DNA through a multi-component complex containing GTP-binding proteins. J Cell Sei 106,287–298

    CAS  Google Scholar 

  • Li O, Heath CV, Arnberg DC, Dockendorff TC, Copeland CS, Snyder M, Cole CN (1995) Mutation or deletion of the Saccharomyces cerevisiae RAT3/NUP133 gene causes temperature-dependent nuclear accumulation of poly(A)+ RNA and constitutive clustering of nuclear pore complexes. Mol Biol Cell 6, 401–417

    PubMed  Google Scholar 

  • Lipowsky G, Bischoff FR, Izaurralde E, Kutay U, Schafer S, Gross HJ, Beier H, Görlich D (1999) Coordination of tRNA nuclear export with processing of tRNA. RNA 5, 539–549

    PubMed  CAS  Google Scholar 

  • Lounsbury KM, Macara IG (1997) Ran-binding protein 1 (RanBPl) forms a ternary complex with Ran and karyopherin beta and reduces Ran GTPase-activating protein (RanGAP) inhibition by karyopherin beta. J Biol Chem 272, 551–555

    PubMed  CAS  Google Scholar 

  • Lund E, Dahlberg JE (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282,2082–208

    PubMed  CAS  Google Scholar 

  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP 1 to nuclear pore complex protein RanBP2. Cell 88, 97–107

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Beach D (1991) Premature initiation of mitosis in yeast lacking RCC1 or an interacting GTPase. Cell 66, 347–360

    PubMed  CAS  Google Scholar 

  • Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP 1, to the nuclear pore complex. J Cell Biol 140, 499–509

    PubMed  CAS  Google Scholar 

  • Maurer P, Redd M, Solsbacher J, Bischoff FR, Greiner M, Podtelejnikov AV, Mann M, Stade K, Weis K, Schlenstedt G (2001) The nuclear export receptor Xpolp forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrblp). Mol Biol Cell 12, 539–549.

    PubMed  CAS  Google Scholar 

  • Merrill C, Bayraktaroglu L, Kusano A, Ganetzky B (1999) Truncated RanGAP encoded by the Segregation Distorter locus of Drosophila. Science 283, 1742–1745

    PubMed  CAS  Google Scholar 

  • Michael WM, Eder PS, Dreyfuss G (1997) The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J 16, 3587–3598

    PubMed  CAS  Google Scholar 

  • Moore MS, Blobel G (1994) A G protein involved in nucleocytoplasmic transport: the role of Ran. Trends Biochem Sei 19, 211–216

    CAS  Google Scholar 

  • Moy TI, Silver PA (1999) Nuclear export of the small ribosomal subunit requires the ran-GTPase cycle and certain nucleoporins. Genes Dev 13, 2118–2133

    PubMed  CAS  Google Scholar 

  • Neville M, Rosbash M (1999) The NES-Crmlp export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J 18, 3746–3756

    PubMed  CAS  Google Scholar 

  • Neville M, Lee L, Stutz F, Davis LI, Rosbash M (1997) Evidence that the importin-beta family member Crmlp bridges the interaction between Rev and the nuclear pore complex during nuclear export in S. cerevisiae. Curr Biol 7, 767–775

    PubMed  CAS  Google Scholar 

  • Nishikura K, De Robertis EM (1981) RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J Mol Biol 145, 405–420

    PubMed  CAS  Google Scholar 

  • Nishimoto T, Eilen E, Basilico C (1978) Premature chromosome condensation in a ts DNA- mutant of BHK cells. Cell 15, 475–483

    PubMed  CAS  Google Scholar 

  • Noguchi E, Hayashi N, Nakashima N, Nishimoto T (1997) Yrb2p, a Nup2p-related yeast protein, has a functional overlap with Rnalp, a yeast Ran-GTPase-activating protein. Mol Cell Biol 17, 2235–2246

    PubMed  CAS  Google Scholar 

  • Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109, 1389–1397

    PubMed  CAS  Google Scholar 

  • Ohtsubo M, Yoshida T, Seino H, Nishitani H, Clark KL, Sprague GF, Frasch M, Nishimoto T (1991) Mutation of the hamster cell cycle gene RCC1 is complemented by the homologous genes of Drosophila and S. cerevisiae. EMBO J 10, 1265–1273

    PubMed  CAS  Google Scholar 

  • Oki M, Nishimoto T (1998) A protein required for nuclear-protein import, Moglp, directly interacts with GTP-Gsplp, the Saccharomyces cerevisiae ran homologue. Proc Natl Acad Sei USA 95, 15388–15393

    CAS  Google Scholar 

  • Oki M, Noguchi E, Hayashi N, Nishimoto T (1998) Nuclear protein import, but not mRNA export, is defective in all Saccharomyces cerevisiae mutants that produce temperature-sensitive forms of the Ran GTPase homologue Gsplp. Mol Gen Genet 257, 624–634

    PubMed  CAS  Google Scholar 

  • Ouspenski II, Mueller UW, Matynia A, Sazer S, Elledge S J, Brinkley BR (1995) Ran-binding protein-1 is an essential component of the Ran/RCCl molecular switch system in budding yeast. J Biol Chem 270, 1975–1978

    PubMed  CAS  Google Scholar 

  • Pasquinelli AE, Powers MA, Lund E, Forbes D, Dahlberg JE (1997) Inhibition of mRNA export in vertebrate cells by nuclear export signal conjugates. Proc Natl Acad Sei USA 94, 14394–14399

    CAS  Google Scholar 

  • Peebles CL, Ogden RC, Knapp G, Abelson J (1979) Splicing of yeast tRNA precursors: a two-stage reaction. Cell 18, 27–35

    PubMed  CAS  Google Scholar 

  • Peebles CL, Gegenheimer P, Abelson J (1983) Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell 32, 525–536

    PubMed  CAS  Google Scholar 

  • Piper PW, Aamand JL (1989) Yeast mutation thought to arrest mRNA transport markedly increases the length of the 3’ poly(A) on polyadenylated RNA. J Mol Biol 208, 697–700

    PubMed  CAS  Google Scholar 

  • Plafker K, Macara IG (2000) Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBPl. Mol Cell Biol 20, 3510–3521

    PubMed  CAS  Google Scholar 

  • Quimby BB, Lamitina T, L’Hernault SW, Corbett AH (2000) The mechanism of Ran import into the nucleus by nuclear transport factor 2. J Biol Chem 275, 28575–28582

    PubMed  CAS  Google Scholar 

  • Ren M, Drivas G, D’Eustachio P, Rush MG (1993) Ran/TC4: a small nuclear GTP-binding protein that regulates DNA synthesis. J Cell Biol 120, 313–323

    PubMed  CAS  Google Scholar 

  • Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17, 6587–6598

    PubMed  CAS  Google Scholar 

  • Rout MP, Blobel G, Aitchison JD (1997) A distinct nuclear import pathway used by ribosomal proteins. Cell 89, 715–725

    PubMed  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148, 635–651

    PubMed  CAS  Google Scholar 

  • Saavedra C, Tung K-S, Arnberg DC, Hopper AK, Cole CN (1996) Regulation of mRNA export in response to stress in Saccharomyces cerevisiae. Genes Dev 10, 1608–1620

    PubMed  CAS  Google Scholar 

  • Sachdev S, Bagchi S, Zhang DD, Mings AC, Hannink M (2000) Nuclear import of IkBcc is accomplished by a ran-independent transport pathway. Mol Cell Biol 20, 1571–1582

    PubMed  CAS  Google Scholar 

  • Saitoh H, Pu R, Cavenagh M, Dasso M (1997) RanBP2 associates with Ubc9p and a modified form of RanGAPl. Proc Natl Acad Sei USA 94, 3736–3741

    CAS  Google Scholar 

  • Sarkar S, Hopper AK (1998) tRNA nuclear export in Saccharomyces cerevisiae: in situ hybridization analysis. Mol Biol Cell 9, 3041–3055

    PubMed  CAS  Google Scholar 

  • Sarkar S, Azad AK, Hopper AK (1999) Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sei USA 96, 14366–14371

    CAS  Google Scholar 

  • Sazer S, Nurse P (1994) A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J 13, 606–615

    PubMed  CAS  Google Scholar 

  • Schönstedt G, Wong DH, Koepp DM, Silver PA (1995) Mutants in a yeast Ran binding protein are defective in nuclear transport. EMBO J 14, 5367–5378

    Google Scholar 

  • Schönstedt G, Smirnova E, Deane R, Solsbacher J, Kutay U, Görlich D, Ponstingl H, Bischoff FR (1997) Yrb4p, a yeast ran-GTP-binding protein involved in import of ribosomal protein L25 into the nucleus. EMBO J 16, 6237–6249

    Google Scholar 

  • Segref A, Sharma K, Doye V, Hellwig A, Huber J, Lührmann R, Hurt E (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J 16, 3256–3271

    PubMed  CAS  Google Scholar 

  • Sharma K, Fabre E, Tekotte H, Hurt EC, Tollervey D (1996) Yeast nucleoporin mutants are defective in pre-tRNA splicing. Mol Cell Biol 16, 294–301

    PubMed  CAS  Google Scholar 

  • Shen WC, Selvakumar D, Stanford DR, Hopper AK (1993) The Saccharomyces cerevisiae LOS1 gene involved in pre-tRNA splicing encodes a nuclear protein that behaves as a component of the nuclear matrix. J Biol Chem 268, 19436–19444

    PubMed  CAS  Google Scholar 

  • Smith A, Brownawell A, Macara IG (1998) Nuclear import of Ran is mediated by the transport factor NTF2. Curr Biol 8, 1403–1406

    PubMed  CAS  Google Scholar 

  • Snay-Hodge CA, Colot HV, Goldstein AL, Cole CN (1998) Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J 77, 2663–2676

    Google Scholar 

  • St John TP, Davis RW (1981) The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol 152, 285–315

    PubMed  CAS  Google Scholar 

  • Stage-Zimmermann T, Schmidt U, Silver PA (2000) Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Mol Biol Cell 11, 3777–3789

    PubMed  CAS  Google Scholar 

  • Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 (Crmlp) is an essential nuclear export factor. Cell 90, 1041–1050

    PubMed  CAS  Google Scholar 

  • Steggerda SM, Paschal BM (2000) The mammalian Mogl protein is a guanine nucleotide release factor for Ran. J Biol Chem 275, 23175–23180

    PubMed  CAS  Google Scholar 

  • Steggerda SM, Black BE, Paschal BM (2000) Monoclonal antibodies to NTF2 inhibit nuclear protein import by preventing nuclear translocation of the GTPase Ran. Mol Biol Cell 11, 703–719

    PubMed  CAS  Google Scholar 

  • Stevens A, Hsu CL, Isham KR, Larimer FW (1991) Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5′→3′ exoribonu-clease 1. J Bacteriol 173, 7024–7028

    PubMed  CAS  Google Scholar 

  • Stochaj U, Rassadi R, Chiu J (2000) Stress-mediated inhibition of the classical nuclear protein import pathway and nuclear accumulation of the small GTPase Gsplp. FASEB J 14, 2130–2132

    PubMed  CAS  Google Scholar 

  • Strasser K, Hurt E (2000) Yralp, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J 19, 410–420

    PubMed  CAS  Google Scholar 

  • Taura T, Schlenstedt G, Silver PA (1997) Yrb2p is a nuclear protein that interacts with Prp20p, ayeast RCC1 homologue. J Biol Chem 272, 31877–31884

    PubMed  CAS  Google Scholar 

  • Taura T, Krebber H, Silver PA (1998) A member of the Ran-binding protein family, Yrb2p, is involved in nuclear protein export. Proc Natl Acad Sei USA 95, 7427–7432

    CAS  Google Scholar 

  • Timmers AC, Stuger R, Schaap PJ, van’t Riet J, Raue HA (1999) Nuclear and nucleolar localization of Saccharomyces cerevisiae ribosomal proteins S22 and S25. FEBS Lett 452, 335–340

    PubMed  CAS  Google Scholar 

  • Traglia HM, O’Connor JP, Tung KS, Dallabrida S, Shen WC, Hopper AK (1996) Nucleus-associated pools of Rnalp, the Saccharomyces cerevisiae Ran/TC4 GTPase activating protein involved in nucleus/cytosol transit. Proc. Natl. Acad. Sei. USA 93, 7667–7672

    CAS  Google Scholar 

  • Tseng SS, Weaver PL, Liu Y, Hitomi M, Tartakoff AM, Chang TH (1998) Dbp5p, a cyto-solic RNA helicase, is required for poly(A)+ RNA export. EMBO J 77, 2651–2662

    Google Scholar 

  • Tucker M, Parker R (2000) Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69, 571–595

    PubMed  CAS  Google Scholar 

  • Udem SA, Warner JR (1973) The cytoplasmic maturation of a ribosomal precursor ribonucleic acid in yeast. J Biol Chem 248, 1412–1416

    PubMed  CAS  Google Scholar 

  • Warner JR (1982) The yeast ribosome: structure, function and synthesis. In: The Molecular Biology of the Yeast Saccharomyces - Metabolism and Gene Expression, Strathern JN, Jones EW, Broach JR, eds. (Cold Spring Harbor Laboratory Press), 529–560

    Google Scholar 

  • Warner JR (1999) The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24, 437–440

    PubMed  CAS  Google Scholar 

  • Watkins JL, Murphy R, Emtage JL, Wente SR (1998) The human homologue of Saccharomyces cerevisiae Glelp is required for poly(A)+ RNA export. Proc Natl Acad Sei USA 95, 6779–6784

    CAS  Google Scholar 

  • Weis K (1998) Importins and exportins: how to get in and out of the nucleus. Trends Biochem Sei 23, 185–189

    CAS  Google Scholar 

  • Winzeier EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906

    Google Scholar 

  • Wolfe CL, Hopper AK, Martin NC (1996) Mechanisms leading to and the consequences of altering the normal distribution of ATP(CTP):tRNA nucleotidyltransferase in yeast. J Biol Chem 277, 4679–4686

    Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100

    PubMed  CAS  Google Scholar 

  • Yoshida K, Blobel G (2001) The karyopherin Kapl42p/Msn5p mediates nuclear import and nuclear export of different cargo proteins. J. Cell. Biol 752, 729–739

    Google Scholar 

  • Zasloff M (1983) tRNA transport from the nucleus in a eukaryotic cell: carrier-mediated translocation process. Proc Natl Acad Sei USA 80, 6436–6440

    CAS  Google Scholar 

  • Zhou Z, Luo MJ, Straesser K, Katahira J, Hurt E, Reed R (2000) The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407, 401–405

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hopper, A.K. (2001). Role of Ran GTPase in RNA Processing and Export of RNA from the Nucleus to the Cytosol: Insights from Budding Yeast. In: Rush, M., D’Eustachio, P. (eds) The Small GTPase Ran. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1501-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1501-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5585-4

  • Online ISBN: 978-1-4615-1501-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics