Skip to main content

The Role of Vasopressin and Angiotensin II in the Hemodynamic Response to Dynamic Exercise

  • Chapter
Control of the Cardiovascular and Respiratory Systems in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 381))

Abstract

The cardiovascular response to dynamic exercise is characterized by increases in blood pressure, myocardial contractility, and heart rate (Mitchell, 1990). In addition, cardiac output is redistributed such that blood flow is reduced in the renal and splanchnic circulations,while it is greatly increased to the heart and contracting skeletal muscles (Armstrong et al, 1987). Although central neural mechanisms (i.e. central command) and reflexes originating in working skeletal muscles are largely responsible for these alterations (Mitchell, 1990), hormones released during physical activity also may contribute to or modulate the cardiovascular response to dynamic exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Mitchell, J.H. 1990, Neural control of the circulation during exercise. Med. Sci. Sports Exercise. 22:141–154.

    CAS  Google Scholar 

  • Armstrong, R.B., Delp, M.D., Goljan E.F., and Laughlin, M.H. 1987, Distribution of blood flow in muscles of miniature swine during exercise. J. Appl. Physiol. 62:1285–1298.

    PubMed  CAS  Google Scholar 

  • Stebbins, C.L., Symons, J.D., McKirnan, M.D., and Hwang, F.W. 1994, Factors associated with vasopressin release in exercising swine. Am. J. Physiol. 266 (35):R118–R124.

    Google Scholar 

  • Cowley, A.W. Jr. and Liard J.F. 1987, Cardiovascular actions of vasopressin. In D.M. Gash and G.J. Boer (eds) Vasopressin: Principles and Properties, Plenum Press, New York, NY, 389–433.

    Google Scholar 

  • Liard, J.F., Deriaz, O., Schelling P., and Thibonnier P. 1982, Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am. J. Physiol. 243 (12):H663–H669.

    Google Scholar 

  • Symons, J.D., Longhurst, J.C., and Stebbins C.L. 1993, Response of collateral-dependent myocardium to vasopressin release during exercise. Am. J. Physiol. 264:H1644–H1652.

    Google Scholar 

  • Stebbins, C.L. and Symons, J.D. 1993, Vasopressin contributes to the cardiovascular response to dynamic exercise. Am. J. Physiol. 264 (33):H1701–H1707.

    Google Scholar 

  • Stebbins, C.L. and Symons, J.D. 1995, Role of angiotensin II in the hemodynamic response to dynamic exercise in the miniswine. J. Appl. Physiol. 78 (1):185–190.

    PubMed  CAS  Google Scholar 

  • Herblin, W.F., Chiu, A.T., McCall, D.E., Ardecky, R. J., Carini, D.J. 1991, Angiotensin II receptor heterogeneity. Am. J. Hypertens. 4 (4):299S–302S.

    PubMed  CAS  Google Scholar 

  • Fagard, R., Amery, A., Reybrouck, T., Lijnen, P., Moerman, E., Bogaert, M., and De Schaepdryver, A. 1977, Effects of angiotensin antagonism on hemodynamics, renin, and catecholamines during exercise. J. Appl. Physiol. 43:440–444.

    PubMed  CAS  Google Scholar 

  • Fagard, R., Amery, A., Reybrouck, T., Lijnen, P., Billiet, L., Bogaert, M., Moerman, E., and de Schaepdryver A. 1978, Effects of angiotensin antagonism at rest and during exercise in sodium-deplete man. J. Appl. Physiol. 45 (3):403–407.

    PubMed  CAS  Google Scholar 

  • Fagard, R., Lijnen, P., Vanhees, L., Amery, A. 1982, Hemodynamic response to converting enzyme inhibition at rest and exercise in humans. J. Appl. Physiol. 53 (3):576–581.

    PubMed  CAS  Google Scholar 

  • Swartz, S.L. and Williams, G.H. 1982, Angiotensin-converting enzyme inhibition and prostaglandins. Am. J. Cardiol. 49:1405–1409.

    Article  PubMed  CAS  Google Scholar 

  • Grafe, M., Bossaller, C., Graf, K., Auch-Wchwelk, W., Baukmgarten, C.R., Hildebrandt, A., and Fleck, E. 1993, Effect of angiotensin-converting enzyme inhibition on bradykinin metabolism by vascular endothelial cells. Am. J. Physiol. 33:H1493–H1497.

    Google Scholar 

  • Wong, P.C., Price, W.A., Chiu, A.T., Duncia, J.V., Carini, D.J., Wexler, R.R., Johnson, A.L., and Timmermans, P.B. 1990, Nonpeptide angiotensin II receptor antagonists. VIII. Characterization of functional antagonism displayed by DuP 753, an orally active antihypertensive agent. J. Pharmacol. Exp. Ther. 252:719–725.

    PubMed  CAS  Google Scholar 

  • Smith, R.D., Chiu, A.T., Wong, P.C., Herblin, W.F., and Timmermans, P.B.M. W.M. 1992, Pharmacology of nonpeptide angiotensin II receptor antagonists. Annu. Rev. Pharmacol. Toxicol. 32: 135–165.

    Article  PubMed  CAS  Google Scholar 

  • MacLean, M.R. and Ungar A. 1986, Effects of the renin-angiotensin system on the reflex response of the adrenal medulla to hypotension in the dog. J. Physiol. (London). 373:343–352.

    CAS  Google Scholar 

  • Szabo, B.L., Hedler, L., Schurr, C., and Starke, K. 1990, Peripheral presynaptic facilitatory effect of angiotensin II on noradrenaline release in anesthetized rabbits. J. Cardiovasc. Pharmacol. 15:968– 975.

    Article  PubMed  CAS  Google Scholar 

  • Mohrman, D.E. and Feigl, E.O. 1978, Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ. Res. 42:79–86.

    Article  PubMed  Google Scholar 

  • Feigl, E.O. The paradox of adrenergic coronary vasoconstriction. 1987, Circulation. 76:737–745.

    Article  PubMed  CAS  Google Scholar 

  • Ball, R.M., Bache, R.J., Cobb, F.R., and Greenfield, J.C. Jr. 1975, Regional myocardial blood flow during graded treadmill exercise in the dog. J. Clin. Invest. 55:43–49.

    Article  PubMed  CAS  Google Scholar 

  • Huang, A.H. and Feigl, E.O. 1988, Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ. Res. 62:286–298.

    Article  PubMed  CAS  Google Scholar 

  • Rowell, L.B. Human cardiovascular control. 1986, New York: Oxford Univ. Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Symons, J.D., Stebbins, C.L. (1995). The Role of Vasopressin and Angiotensin II in the Hemodynamic Response to Dynamic Exercise. In: Kappagoda, C.T., Kaufman, M.P. (eds) Control of the Cardiovascular and Respiratory Systems in Health and Disease. Advances in Experimental Medicine and Biology, vol 381. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1895-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1895-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5773-5

  • Online ISBN: 978-1-4615-1895-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics