Skip to main content

Core Temperature Thresholds for Ventilation during Exercise

Temperature and Ventilation

  • Chapter
Modeling and Control of Ventilation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 393))

Abstract

An increase of body temperatures by about 1.0 °C in humans at rest increases the ventilation rate (8). Recently in humans we reported that passive hyperthermia, above thresholds of tympanic (Tty) and esophageal temperatures (Tes), induced an increase in ventilation rate that was proportional to the increase in core temperatures (4). This increased ventilation during hyperthermia leads to a small but significant increase respiratory heat loss (10) and this thermally induced hyperventilation in humans (3), as it does in other species (1), appears to be a thermolytic mechanism that could be contributing to selective brain cooling (SBC). SBC in hyperthermic humans occurs when the Tty is lower than Tes. During exercise, however, the relationship between ventilation and core temperatures is not so clear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, M. A. Brain cooling in endotherms in heat and exercise. Ann. Rev. Physiol. 44: 85–96, 1982.

    Article  CAS  Google Scholar 

  2. Brinnel, H. and M. Cabanac. Tympanic temperature is a core temperature in humans. J. Thermal Biol. 14: 47–53, 1989.

    Article  Google Scholar 

  3. Cabanac, M. Selective brain cooling in humans: “fancy” or fact.FASEB 7: 1143–1147, 1993.

    CAS  Google Scholar 

  4. Cabanac, M. and M. D. White. Core temperature thresholds for hyperpnea during passive hyperthermia in humans. Eur. I Appl. Physiol. 71: 71–76, 1995.

    Article  CAS  Google Scholar 

  5. Caputa, M. Selective brain cooling an important component of thermal physiology. In: Contributions to Thermal Physiology, edited by Z. Szelenyi and M. Szekely. Pecs, Hungary: Permagon Press, Budapest, 1980, p. 183–192.

    Google Scholar 

  6. Ellaway, P. H. Cumulative sum technique and its application to the analysis of peristimulus time histograms. Electroencephalogr. Clin. Neurophysiol. 45: 302–304, 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Gerbrandy, J., E. S. Snell and W. I. Cranston. Oral, rectal and esophageal temperatures in relation to central temperature control in man. Clinical Science 13f: 615–623, 1954.

    Google Scholar 

  8. Haldane, J. S. The influence of high air temperatures. J. Hygiene 55: 497–513, 1905.

    Google Scholar 

  9. Hammel, H. T., D. C. Jackson. J. A. J Stolwijk, J. D. Hardy and S. W. B. Stromme. Temperature regulation by hypothalamic proportional control with an adjustable set point. J. Appl. Physiol. 18(6): 1146–1154, 1963.

    PubMed  CAS  Google Scholar 

  10. Hanson, R. de. G. Respiratory heat loss at increased core temperature. J. Appl. Physiol. 37(1): 103–107, 1974.

    Google Scholar 

  11. Livingstone, S. D., J. Grayson, J. Frim, C. L. Allen and R. E. Limmer. Effect of cold exposure on various sites of core temperature measurements. J. Appl. Physiol. 54(4): 1025–1031, 1983.

    PubMed  CAS  Google Scholar 

  12. Mariak, Z., J. Lewko, J. Luczaj, B. Polocki and M. D. White. The relationship between directly measured human cerebral and tympanic temperatures during changes in brain temperatures. Eur. J. Appl. Physiol. 69: 545–49, 1994.

    Article  CAS  Google Scholar 

  13. Mekjavic, I. B. and M. E. Rempel. Determination of esophageal probe insertion length based on standing and sitting height. J. Appl. Physiol. 69: 376–379, 1990.

    PubMed  CAS  Google Scholar 

  14. Petersen, E. S. and H. Vejby-Christensen. Effects of body temperature on steady state ventilation in exercise. Acta Physiol. Scand. 89: 342–351, 1973.

    Article  PubMed  CAS  Google Scholar 

  15. Rasch, W., P. Samson, J. Ctite and M. Cabanac. Heat loss from the human head during exercise. J. Appl. Physiol. 71: 590–595, 1991.

    PubMed  CAS  Google Scholar 

  16. Whipp, B. J. and K. Wasserman. Effect of body temperature on the ventilatory response to exercise. Resp. Physiol. 8: 354–360, 1970.

    Article  CAS  Google Scholar 

  17. White, M. D. and M. Cabanac. Nasal mucosal vasodilatation in response to passive hyperthermia in humans. Eur. J. Appl. Physiol. 70: 207–212, 1995.

    Article  CAS  Google Scholar 

  18. White, M. D. and M. Cabanac. Physical dilatation of the nares lowers the thermal strain in exercising subjects. Eur. I Appl. Physiol. 70: 200–206, 1995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

White, M.D., Cabanac, M. (1995). Core Temperature Thresholds for Ventilation during Exercise. In: Semple, S.J.G., Adams, L., Whipp, B.J. (eds) Modeling and Control of Ventilation. Advances in Experimental Medicine and Biology, vol 393. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1933-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1933-1_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5792-6

  • Online ISBN: 978-1-4615-1933-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics