Skip to main content

Neuroendocrine Effects of Interferon-α in the Rat

  • Chapter
The Brain Immune Axis and Substance Abuse

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 373))

Abstract

We have previously found that recombinant human interferon-α2A (rHu-IFN- α2A) inhibits hypothalamo-pituitary-adrenocortical (HPA) axis activity following both peripheral and central administration. This effect is antagonized by µ-opioid receptor antagonists, suggesting transduction by this subtype of opioid receptors. We have now demonstrated that this effect is also observed with hybrid rHu-IFN-αA/D, rat kidney fibroblast-derived IFN-α, and recombinant rat IFN-α preparations. The inhibitory effects on HPA activity were observed after intraperitoneal (i.p.) injections of rHu-IFN- α2A (103 U), rHu-IFN- αA/D (104 U), and of Rat-IFN-α (1-10 U). Similar effects were observed with intracerebroventricular (i.c.v.) admini­stration of all four IFN-α preparations. No increases in plasma corticosterone concentrations were observed with doses of rHu-IFN-α A/D up to 106 U (i.p.) or 7X1 05 U (i.c.v.), but increases were found following i c v. administration of high doses of Rat-IFN-α (103 and 5X103 U). The inhibitory effects of all of the IFN-α preparations tested were antagonized by naloxone, but the stimulatory effects of 5X1 03 U Rat-IFN- α were not. Injections of rHu-IFN- α2A (104 U, i.p.) to urethane-anesthetized rats decreased the electrical activity of the majority of hypothalamic paraventricular nucleus (PVN) neurons tested, including putative corticotropin-releasing fac­tor- (CRF)-secreting neurons antidromically identified as projecting to the median eminence. Similarly, iontophoretic application of rHu-IFN-α2A decreased the electrical activity of such cells. These electrophysiological data suggest that the decreases in HPA activity evoked by IFN-α are mediated, at least in part, by a rapid inhibitory effect at the level of the corticotropin­releasing factor-secreting neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Pestka, J. A. Langer, K. C. Zoon, and C. E. Samuel. Interferons and their actions. Ann. Rev. Biochem. 56:727 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. F. Dianzani, G. Antonelli, and M. R. Capobianchi, The biological basis for clinical use of interferon. J. Hepatol. 11:S5 (1990).

    Article  PubMed  Google Scholar 

  3. R. M. Friedman, and S. N. Vogel. Interferon with special emphasis on the immune system. Adv. Immunol. 341:97 (1983).

    Article  Google Scholar 

  4. D. Fuchs, A. Forsman, L. Hagberg, M. Larsson, G. Norkrans, G. Reibnegger, E. R. Werner, and H. Wachter. Immune activation and decreased tryptophan in patients with HIV-1 infection. J. Interferon. Res. 10:599 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. J. A. Goldstein. Chronic fatigue syndromes: the limbic hypothesis, in: “The Haworth Library of the Medical Neurobiology of Somatic Disorders, Vol. 1.” J. A. Goldstein, ed., The Haworth Medical Press, New York (1993).

    Google Scholar 

  6. A. Lloyd, I. Hickie, A. Brockman, J. Dwyer, and D. Wakefield. Serum and cerebrospinal fluid cytokine levels in patients with chronic fatigue syndrome and control subjects. J. Infect. Dis. 164:1023 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. J. M. Gorman, R. Kertzner, T. Cooper, R. R. Goetz, I. Lagomasino, H. Novacenko, J. B. W. Williams, D. S. W. Yaakov Stern, R. Mayeux, and A. A. Ehrhardt. Glucocorticoid level and neuropsychiatric symptoms in homosexual men with HIV infection. Am. J. Psychiatry 148:41 (1991).

    PubMed  CAS  Google Scholar 

  8. C. A. Meyers, R. S. Scheibe’, and A. D. Forman. Persistent neurotoxicity of systemically administered interferon-alpha. Neurology 41:672 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. D. Kidron, D. Saphier, H. Ovadia, J. Weidenfeld, and O. Abramsky. Central administration of immuno­modulatory factors alters neural activity and adrenocortical secretion. Brain Behay. Immun. 3:15 (1989).

    Article  CAS  Google Scholar 

  10. B. Birmanns, D. Saphier, and O. Abramsky. a-Interferon modifies cortical EEG activity: dose-depend­ency and antagonism by naloxone. J. Neurol. Sci. 100:22 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. J. E. Blalock, and E. M. Smith. Human leukocyte interferon (HuIFN-alpha): potent endorphin-like opioid activity. Biochem. Biophys. Res. Commun. 101:472 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. R. A. Menzies, R. Patel, N. R. S. Hall, M. P. O’Grady, and S. E. Rier. Human recombinant interferon alpha inhibits naloxone binding to rat brain membranes. Life Sci. 50:227 (1992).

    Article  Google Scholar 

  13. L. F. Panchenko, T. N. Aliab’eva, O. B. Petrichenko, V. V. Bumialis, and A. M. Balashov. Spetsificheskoe sviazyvanie mu-i delta-ligandov opiatny miretseptorami golovnogo mozga krys v prisutstvii reaferona. Biull. Eksp. Biol. Med. 106:307 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. R. D’Urso, P. Falaschi, G. Canfalone, E. Carusi, A. Proietti, V. Barnaba, and F. Balsano. Neuroendocrine effects of recombinant α-interferon administration in humans. Prog. NeuroEndocrinlmmunology 4:20 (1991).

    Google Scholar 

  15. J. R. Quesada, M. Talpaz, A. Rios, R. Kurzrock, and J. U. Gutterman. Clinical toxicology of interferons in cancer patients: a review. J. Clin. Oncol. 4:234 (1986).

    PubMed  CAS  Google Scholar 

  16. R. V. Smalley, and R. K. Oldham. Interferon as a biological response modifying agent in clinical trials. J. Biol. Resp. Modifiers 2:401 (1983).

    CAS  Google Scholar 

  17. N. Dafny. Interferon modifies morphine withdrawal phenomena in rodents. Neuropharmacology 22:647 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. L. S. Crnic, and M. A. Segall. Behavioral effects of mouse interferons-α and -γ and human interferon-α in mice. Brain Res. 590:277 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. H. Nakamura, K. Nakanishi, A. Kita, and T. Kadokawa. Interleukin-1 induces analgesia in mice by a central action. Eur. J. Pharmacol. 149:49 (1988).

    Article  PubMed  CAS  Google Scholar 

  20. N. Dafny. Interferon modifies EEG and EEG-like activity recorded from sensory, motor, and limbic system structures in freely behaving rats. Neurotoxicol. 4:235 (1983).

    CAS  Google Scholar 

  21. M. Shibata, and C. M. Blatteis. Differential effects of cytokines on thermosensitive neurons in guinea pig preoptic area slices. Am. J. Physiol. 261:R1096 (1992).

    Google Scholar 

  22. T. Nakashima, T. Maori, K. Kuriyama, and T. Kiyohara. Naloxone blocks the interferon-α induced changes induced changes in hypothalamic neuronal activity. Neurosci. Lett. 82:332 (1987).

    Article  PubMed  CAS  Google Scholar 

  23. C. M. Blatteis, L. Xin, and N. Quan. Neuromodulation of fever: apparent involvement of opioids. Brain Res. Bull. 26:219 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. L. J. Pellegrino, A. S. Pellegrino, and A. J. Cushman. “A stereotaxic atlas of the rat brain,” Plenum Press, New York (1973).

    Google Scholar 

  25. D. Saphier, and S. Feldman. Adrenoceptor specificity in the central regulation of adrenocortical secretion. Neuropharmacology 28:1231 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. J. E. Welch, G. E. Farrar, A. J. Dunn, and D. Saphier. Central 5-HT1A receptors inhibit adrenocortical secretion. Neuroendocrinology 57:272 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. A. Gwosdow-Cohen, C. L. Chen, and E. L. Besch. Radioimmunoassay (RIA) of serum corticosterone in rats. Proc. Soc. Exp. Biol. Med. 170:29 (1982).

    PubMed  CAS  Google Scholar 

  28. D. Saphier, and S. Feldman. Effects of septal and hippocampal stimuli on paraventricular nucleus neurones. Neuroscience 20:749 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. D. Saphier, and H. Ovadia. Selective facilitation of putative corticotropin-releasing factor-secreting neurones by interleukin-1. Neurosci. Lett. 114:283 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. D. Saphier, and S. Feldman. lontophoretic application of glucocorticoids inhibits identified neurones in the rat paraventricular nucleus. Brain Res. 453:183 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. D. Saphier, J. E. Welch, and H. E. Chuluyan. α-Interferon inhibits adrenocortical secretion via µ1-opioid receptors in the rat. Eur. J. Pharmacol. 236:186 (1993).

    Article  Google Scholar 

  32. P. K. Weck, S. Apperson, N. Stebbing, P. W. Gray, D. Leung, H. M. Shepard, and D. V. Goeddel. Antiviral activities of hybrids of two major human leukocyte interferons. Nucleic Acids Res. 9:6153 (1981).

    Article  PubMed  CAS  Google Scholar 

  33. D. Saphier, S. C. Roerig, C. Ito, W. R. Vlasak, G. E. Farrar, J. E. Broyles, and J. E. Welch. Inhibition of neural and neuroendocrine activity by α-interferon: neuroendocrine, electrophysiological and biochemi­cal studies in the rat. Brain Behay. Immun. 8:37 (1994).

    Article  CAS  Google Scholar 

  34. H. O. Besedovsky, A. del Rey, E. Sorkin, and C. A. Dinarello. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233:652 (1986).

    Article  PubMed  CAS  Google Scholar 

  35. H. Yasui, K. Takai, R. Yoshida, and O. Hayaishi. Interferon enhances tryptophan metabolism by inducing pulmonary indoleamine 2,3-dioxygenase: its possible occurrence in cancer patients. Proc. Natl. Acad. Sci. U.S.A. 83:6622 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. M. P. Heyes, B. J. Brew, A. Martin, R. W. Price, A. M. Salazar, J. J. Sidtis, J. A. Yergey, M. M. Mouradian, and A. E. Sadler. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann. Neurol. 29:202 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saphier, D. (1995). Neuroendocrine Effects of Interferon-α in the Rat. In: Sharp, B.M., Eisenstein, T.K., Madden, J.J., Friedman, H. (eds) The Brain Immune Axis and Substance Abuse. Advances in Experimental Medicine and Biology, vol 373. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1951-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1951-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5801-5

  • Online ISBN: 978-1-4615-1951-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics