Skip to main content

Inferior Olive and the Saccadic Neural Integrator

  • Chapter
Neural Control of Movement

Summary

Following a lesion of the inferior olive, spontaneous saccades are characterised by a backward postsaccadic drift. When performed in light, this drift has a time constant of 100– 150ms and after a few tens of ms, it gradually slows down to reach a steady level under a drive of the optokinetic reflex. In dark, this drift is followed by a slower drift due to the leakage of the neural integrator. When calculated on saccades of 10° of amplitude and ending near the midline the time constant is 0.9s. The amplitude of the postsaccadic drift (y) in light depends on the saccadic amplitude (x) and on the eccentricity (z), according to the equation y = 0.23 x + 0.24 z. This means that the gain of the pulse to step transformation is 0.77 at all saccadic amplitudes. Following flocculus-paraflocculus lesion the time constant of the neural integrator is 0.9s and the equation relating the amplitude of the postsaccadic drift to the saccadic amplitude and to the eccentricity is y = 0.21 x + 0.23 z. Thus, there is a striking similarity between the inferior olive and flocculus-paraflocculus lesion.

There is anatomical evidence that the pathway from the inferior olive to the flocculus projects to the prepositus hypoglossi nucleus which in turn sends fibres to the inferior olive. Such a loop is superimposed on that of the brain stem neural integrator formed by the medial vestibular and prepositus hypoglossi nuclei. The interruption of the loop at either the inferior olive or flocculus levels would lead to similar impairment of the neural integrator. We propose the hypothesis that the olivocerebellar loop is part of the neural integrator with the function of improving the dynamic performance of the integrator and of being also responsible for its adaptive capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alley, K. (1977). Anatomical basis for interaction between cerebellar flocculus and brain stem. In Developments in Neuroscience, Vol J, Control of gaze by brain stem neurons, ed. Baker, R. and Berthoz, A., pp 109–117. Elsevier, Amsterdam.

    Google Scholar 

  • Baker, R. and Berthoz, A. (1975a). Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway?. Brain Research 86, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Baker, R. and Berthoz, A. (1975b). Vestibular input to the prepositus hypoglossi nucleus. Federation Proceedings 34, 439.

    Google Scholar 

  • Balaban, C.D. (1983). A projection from nucleus reticularis tegmenti pontis of Bechterew to the medial vestibular nucleus in rabbits. Experimental Brain Research 51, 304–309.

    Article  CAS  Google Scholar 

  • Barmack, N.H. and Hess, D.T. (1980). Multiple-unit activity evoked in dorsal cap of inferior olive of the rabbit by visual stimulation. Journal of Neurophysiology 43, 151–164.

    PubMed  CAS  Google Scholar 

  • Blanks, R.H.I. (1988). Cerebellum. In Neuroanatomy of the oculomotor system, ed. Büttner-Ennever, A., pp 225–272. Elsevier, Amsterdam.

    Google Scholar 

  • Cannon, S.C. and Robinson, D.A. (1987). Loss of the neural integrator of the oculomotor system from brain stem lesion in monkey. Journal Neurophysiology 57, 1383–1409.

    CAS  Google Scholar 

  • Chelazzi, L., Ghirardi, M., Rossi, F., Strata. P. and Tempia, F. (1990). Spontaneous saccades and gaze holding abilities in the pigmented rat: II. Effect of localized cerebellar lesions. European Journal of Neuroscience 2, 1085–1094.

    Google Scholar 

  • Chelazzi, L., Rossi, F., Tempia, F., Ghirardi, M. and Strata, P. (1989). Saccadic eye movements and gaze holding in the head-restrained pigmented rat. European Journal of Neuroscience 1, 639–646.

    Article  PubMed  Google Scholar 

  • Cheron, G., Gillis, P. and Godaux, E. (1986a). Lesions in the cat prepositus complex: effects on the optokinetic system. Journal of Physiology 372, 95–111.

    PubMed  CAS  Google Scholar 

  • Cheron, G., Godaux, E., Laune, J.M. and Vanderkelen. B. (1986b). Lesions in the cat prepositus complex: effects on the vestibulo-ocular reflex and saccades. Journal of Physiology 372, 75–94.

    PubMed  CAS  Google Scholar 

  • Cheron, G., and Godaux, E. (1987) Disabling of the oculomotor neural integrator by kainic acid injections in the prepositus-vestibular complex of the cat. Journal of Physiology 394, 267–290.

    PubMed  CAS  Google Scholar 

  • De Zeeuw, C.I., Wentzel, P. and Mugnaini, E. (1993). Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. Journal of Comparative Neurology 327, 63–82.

    Article  PubMed  Google Scholar 

  • Eccles, J.C., Ito, M. and Szentágothai, J. (1967). The cerebellum as a neuronal machine. Springer, New York.

    Google Scholar 

  • Eccles, J.C., Llinás, R. and Sasaki, K. (1966). The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. Journal of Physiology 182, 268–296.

    PubMed  CAS  Google Scholar 

  • Escudero, M., De la Cruz, R.R. and Delgado Garcia, J.M. (1992). A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat. Journal of Physiology 458, 539–560.

    PubMed  CAS  Google Scholar 

  • Fuchs, A.F., Kaneko, C.R.S. and Scudder, C.A. (1985). Brainstem control of saccadic eye movements. Annual Review of Neuroscience 8, 307–337.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, A.F. and Kimm, J. (1975). Unit activity in vestibular nucleus of the alert monkey during horizontal angular acceleration and eye movement. Journal of Neurophysiology 38, 1140–1161.

    PubMed  CAS  Google Scholar 

  • Gerrits, N.M. (1985). Brainstem control of the cerebellar flocculus. Doctoral thesis. Leiden: Krips Repreo-Meppel.

    Google Scholar 

  • Graybiel, A.M. (1977). Direct and indirect preoculomotor pathways of the brain stem: an autoradiographic study of the pontine reticular formation in the cat. Journal of Comparative Neurology 175, 37–78.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M. and Hartweig, E.A. (1974). Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Research 81, 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Hess, B. J. M., Savio, T. and Strata, P. (1988). Dynamic characteristics of optokinetically controlled eye movements following inferior olive lesions in the brown rat. Journal of Physiology 397, 349–370.

    PubMed  CAS  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. Raven Press, New York.

    Google Scholar 

  • Ito, M. (1991). The cellular basis of cerebellar plasticity. Current Opinion in Neurobiology 1, 616–620.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Jastreboff, P.J. and Miyashita, Y. (1980). Retrograde influence of surgical and chemical flocculectomy upon dorsal cap neurons of the inferior olive. Neuroscience Letters 20, 45–48.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Nisimaru, N. and Shibuki, K. (1979). Destruction of the inferior olive induces rapid depression in synaptic action of cerebellar Purkinje cells. Nature 277, 568–569.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, C.R.S. (1992). Effects of ibotenic acid lesions of nucleus prepositus hypoglossi on optokinetic and vestibular eye movements in the alert, trained monkey. In “Sensing and controlling motion”. Annals of the New York Academy of Sciences 656, 408–427.

    Article  CAS  Google Scholar 

  • Kaneko, C.R.S. and Fuchs, A.F. (1991). Saccadic eye movement deficits following ibotenic acid lesions of the nuclei raphe interpositus and prepositus hypoglossi in monkey. Acta Otolaryngology Supplementum 481, 213–216.

    Article  CAS  Google Scholar 

  • Karachot, L., Ito, M. and Kanai, Y. (1987). Long-term effects of 3-acetylpyridine-induced destruction of cerebellar climbing fibers on Purkinje cells inhibition of vestibulospinal tract cells of the rat. Experimental Brain Research 66, 229–246.

    Article  CAS  Google Scholar 

  • Keller, E.L. (1974). Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology 37, 316–332.

    PubMed  CAS  Google Scholar 

  • Keller, E.L. and Daniels, P.D. (1975). Oculomotor related interaction of vestibular and visual stimulation in vestibular nucleus cells in alert monkey. Experimental Neurology 46, 187-198.

    Article  PubMed  CAS  Google Scholar 

  • Kotchabhakdi, N. (1977). Cerebellar projections from the perihypoglossal nuclei. In Developments in Neuroscience, Vol 1, Control of gaze by brain stem neurons, ed. Baker, R. and Berthoz, A., pp 119–130. Elsevier, Amsterdam.

    Google Scholar 

  • Leonard, C.S., Simpson, J.I. and Graf, W. (1988). Spatial organization of visual messages of the rabbit’s cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. Journal of Neurophysiology 60, 2073-2090.

    Google Scholar 

  • Lisberger, S.G. (1988). The neural basis for learning of simple motor skills. Science 242, 728–735.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Barneo, J., Darlot, C., Berthoz, A. and Baker, R. (1982). Neuronal activity in prepositus nucleus correlated with eye movements in the alert cat. Journal of Neurophysiology 47, 329–352.

    PubMed  CAS  Google Scholar 

  • McCrea, R.A. (1988). The nucleus prepositus. In Neuroanatomy of the oculomotor system, ed. Büttner-Ennever, A. pp 203–225. Elsevier, Amsterdam.

    Google Scholar 

  • McFarland, J.L. (1988). The role of the nucleus prepositus hypoglossi and the adjacent medial vestibular nucleus in the control of horizontal eye movement in the behaving monkey. PhD Thesis. University of Washington, Seattle, Washington.

    Google Scholar 

  • Montarolo, P.G., Palestini, M. and Strata, P. (1982). The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat. Journal of Physiology 332, 187–202.

    Google Scholar 

  • Montarolo, P.G., Raschi, F. and Strata, P. (1981). Are the climbing fibres essential for the Purkinje cells inhibitory action?. Experimental Brain Research 42, 215–218.

    Article  CAS  Google Scholar 

  • Noda, H. and Suzuki, D.A. (1979a). The role of the flocculus of the monkey in saccadic eye movements. Journal of Physiology 294, 317–334.

    PubMed  CAS  Google Scholar 

  • Noda, H. and Suzuki, D.A. (1979b). The role of the flocculus of the monkey in fixation and smooth pursuit eye movements. Journal of Physiology 294, 335–348.

    PubMed  CAS  Google Scholar 

  • Optican, L.M. and Miles, F.A. (1985). Visually induced adaptive changes in primate saccadic oculomotor control signals. Journal of Neurophysiology 54, 940–958.

    PubMed  CAS  Google Scholar 

  • Optican, L.M. and Robinson, D.A. (1980). Cerebellar dependent adaptive control of primate saccadic system. Journal of Neurophysiology 44, 1058–1079.

    PubMed  CAS  Google Scholar 

  • Optican, L.M., Zee, D.S. and Miles, F.A. (1986). Floccular lesions abolish adaptive control of post-saccadic ocular drift in primates. Experimental Brain Research 64, 596–598.

    Article  CAS  Google Scholar 

  • Richtie, L. (1976). Effects of cerebellar lesions on saccadic eye movements. Journal of Neurophysiology 39, 1246–1256.

    Google Scholar 

  • Robinson, D.A. (1974) The effect of the cerebellectomy on the cat’s vestibuloocular integrator. Brain Research 71, 195–207.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D.A. (1975). Oculomotor control signals. In Basic Mechanisms of Ocular Motility and Their Clinical Implications, ed. Lennerstand, G. and Bach-y-Rita, P., pp. 337–374. Pergamon, New York.

    Google Scholar 

  • Robinson, D.A. (1981). Control of eye movements. In Handbook of Physiology. The nervous system II, ed. Brooks, V.B., pp. 1275–1320. American Physiological Society, Bethesda.

    Google Scholar 

  • Rossi, F., Camino, D. and Strata, P. (1987). Morphology of the Purkinje cell axon terminals in intracerebellar nuclei following inferior olive lesion. Neuroscience 22, 99–112.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, F., Borsello, T., Vaudano, E. and Strata, P. (1993). Regressive modifications of climbing fibres following Purkinje cell degeneration in the cerebellar cortex of the adult rat. Neuroscience 53, 759–778.

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok, T.J.H., Osse, R.J. and Voogd, J. (1992). Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum. Journal of Comparative Neurology 316, 129–150.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J.I., Graf, W. and Leonard, C.S. (1981). The coordinate system of visual climbing fibers to the flocculus. In Progress in oculomotor research, ed. Fuchs, A. and Becker, W., pp. 475–484. Elsevier, Amsterdam.

    Google Scholar 

  • Strata, P. (1989) (ed.) The olivocerebellar system in motor control. Springer, New York.

    Book  Google Scholar 

  • Strata, P., Chelazzi, L., Ghirardi, M., Rossi, F. and Tempia, F. (1990). Spontaneous saccades and gaze holding abilities in the pigmented rat: I. Effects of inferior olive lesion. European Journal of Neuroscience 2, 1074–1084.

    Article  PubMed  Google Scholar 

  • Strata, P., Chelazzi, L., Tempia, F., Rossi, F. and Ghirardi, M. (1992). Cerebellar control of saccadic eye movements in the pigmented rat. In The cerebellum revisited, ed. Llinás, R. and Sotelo, C., pp. 215–225. Springer, New York.

    Chapter  Google Scholar 

  • Yingharoen, K. and Rinvik, E. (1983). Ultrastructural demonstration of a projection from the flocculus to the nucleus prepositus hypoglossi in the cat. Experimental Brain Research 51, 192–198.

    Google Scholar 

  • Zee, D.S., Yamazaki, A., Butler, P.H. and Gücer, G. (1981) Effect of ablation of flocculus and paraflocculus on eye movements in primate. Journal of Neurophysiology 46, 878–899.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Strata, P., Rossi, F., Tempia, F. (1995). Inferior Olive and the Saccadic Neural Integrator. In: Ferrell, W.R., Proske, U. (eds) Neural Control of Movement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1985-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1985-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5818-3

  • Online ISBN: 978-1-4615-1985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics