Skip to main content

Primitive Role for GABAergic Reticulospinal Neurones in the Control of Locomotion

  • Chapter
Neural Control of Movement
  • 138 Accesses

Summary

All animals need to be able to stop locomotion as well as start it. In hatchling embryos of the clawed toad Xenopus, swimming locomotion can be stopped by pressure on the head or cement gland. The receptors for this response are trigeminal neurones with free nerve endings which project centrally into the brainstem. Our evidence suggests that these receptors excite GABAergic reticulospinal neurones which project to both sides of the spinal cord to inhibit spinal motoneurones and interneurones and in this way turn off the spinal locomotor pattern generator to terminate swimming locomotion. Similar reticulospinal GABAergic pathways have been shown anatomically in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boothby, K.M. and Roberts, A. (1992a) The stopping response of Xenopus laevis embryos: behaviour, development and physiology. Journal of Comparative Physiology 170, 171–180

    PubMed  CAS  Google Scholar 

  • Boothby, K.M. and Roberts, A. (1992b) The stopping response of Xenopus laevis embryos: Pharmacology and intracellular physiology of rhythmic spinal neurons and hindbrain neurons. Journal of Experimental Biology 169, 65–86.

    PubMed  CAS  Google Scholar 

  • Clarke J.D.W. and Roberts A. (1984) Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming. Journal of Physiology 354, 345–362.

    PubMed  CAS  Google Scholar 

  • Dale, N., Ottersen, O.P., Roberts, A. and Storm-Mathisen, J. (1986) Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine. Nature 324, 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Hayes B.P. and Roberts A. (1983) The anatomy of two functional types of mechanoreceptive ‘free’ nerve-endings in the head skin of Xenopus embryos. Proceedings of the Royal Society London (B) 218, 61–76.

    Article  CAS  Google Scholar 

  • Holstege, J.C. (1991) Ultrastructural evidence for GABAergic brainstem projections to spinal motorneurons in the rat. Journal of Neuroscience 11, 159–167.

    PubMed  CAS  Google Scholar 

  • Holstege, J.C. and Bongers, C.M.H. (1990) Ultrastructural evidence that brainstem projections to spinal motorneurons contain glycine. European Journal Neuroscience (Suppl.) 3, 96.

    Google Scholar 

  • Holstege, J.C. and Kuypers, H.G.J.M. (1982) The anatomy of brainstem pathways to the spinal cord in the cat. A labelled amino acid tracing study. Progress in Brain Research 57, 177–183.

    CAS  Google Scholar 

  • Kuypers, H.G.J.M. (1981) Anatomy of descending pathways, pp 597–666, in Handbook of Physiology, Section 1: The nervous system, II Motor control, Part 1. ed. Brooks, V.B. American Physiological Society, Bethesda.

    Google Scholar 

  • Llinas, R. and Terzuolo, C.A. (1964) Mechanisms of supraspinal actions upon spinal cord activities. Reticular inhibitory mechanisms on alpha-extensor motoneurons. Journal of Neurophysiology 27, 579–591.

    CAS  Google Scholar 

  • Magoun, H.W. (1963) Reticulo-spinal influences and postural regulation, pp 23–38 in The waking Brain, ed. Thomas. Springfield, Illinois.

    Google Scholar 

  • Magoun, H.W. and Rhines, R. (1946) An inhibitory mechanism in the bulbar reticular formation. Journal of Ne u rophys io logy, 9 165–171.

    Google Scholar 

  • Mori, S. (1987) Integration of posture and locomotion in acute decerebrate cats and in freely moving cats. Progress in Neurobiology 28, 161–195.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A (1980) The function and role of two types of mechanoreceptive “free” nerve endings in the head skin of amphibian embryos. Journal of Comparative Physiology A. 135: 341–348.

    Article  Google Scholar 

  • Roberts, A. (1990) How does a nervous system produce behaviour? A case study in neurobiology. Science Progress Oxford 74, 31–51.

    CAS  Google Scholar 

  • Roberts, A. and Blight, A.R. (1975) Anatomy, Physiology and behavioural role of sensory nerve endings in the cement gland of embryonic Xenopus. Proceedings of the Royal Society London B. 296: 195–212.

    Article  Google Scholar 

  • Roberts A. and Roberts B.L. (1983) Neural origin of rhythmic movements. SEB Symposium XXXVII. Cambridge University Press, Cambridge.

    Google Scholar 

  • Roberts, A. and Sillar, K.T. (1990) Characterisation and function of spinal excitatory interneurons with commissural projections in Xenopus laevis embryos. European Journal of Neuroscience 2, 1051–1062.

    Article  PubMed  Google Scholar 

  • Roberts, A., Dale, N., Ottersen, O.P. and Storm-Mathisen, J. (1987) The early development of neurons with GAB A immunoreactivity in the central nervous system of Xenopus laevis embryos. Journal of Comparative Neurology. 261, 435–449.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A., Dale, N., Ottersen, O.P. and Storm-Mathisen, J. (1988) Development and characterization of commissural interneurons in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine. Development 103, 447–461.

    PubMed  CAS  Google Scholar 

  • Sillar, K.T. and Roberts, A. (1992) The role of premotor interneurones in phase-dependent modulation of a cutaneous reflex during swimming in Xenopus laevis embryos. Journal of Neuroscience 12, 1647–1657.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roberts, A. (1995). Primitive Role for GABAergic Reticulospinal Neurones in the Control of Locomotion. In: Ferrell, W.R., Proske, U. (eds) Neural Control of Movement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1985-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1985-0_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5818-3

  • Online ISBN: 978-1-4615-1985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics