Skip to main content

Concave Minimization: Theory, Applications and Algorithms

  • Chapter
Handbook of Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 2))

Abstract

The purpose of this chapter is to present the essential elements of the theory, applications, and solution algorithms of concave minimization. Concave minimization problems seek to globally minimize real-valued concave functions over closed convex sets. As in other global optimization problems, in concave minimization problems there generally exist many local optima which are not global. Concave minimization problems are NP-hard. Even seemingly-simple cases can possess an exponential number of local minima. However, in spite of these difficulties, concave minimization problems are more tractable than general global optimization problems. This is because concave functions and minimizations display some special mathematical properties. Concave minimization problems also have a surprisingly-diverse range of direct and indirect applications. The special mathematical properties and diverse range of applications of concave minimization have motivated the construction of a rich and varied set of approaches for their solution. Three fundamental classes of solution approaches can be distinguished. These are the enumerative, successive approximation, and successive partitioning (branch and bound) approaches. After giving a brief introduction, the chapter describes and discusses some of the most important special mathematical properties of concave functions and of concave minimization problems. Following this, it describes several of the most important categories of direct and indirect applications of concave minimization. The chapter then describes each of the three fundamental solution approaches for concave minimization. For each approach, the essential elements are explained in a unified framework. Following this, for each approach, most of the well-known individual concave minimization algorithms that use the approach are explained and compared. The scope of the presentation of the solution approaches and algorithms is limited to those that use deterministic (rather than stochastic) methods. The chapter concludes with some suggested topics for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alameddine, Amine (1990), “A New Reformulation-Linearization Technique for the Bilinear Programming and Related Problems with Applications to Risk Management,” Ph.D. Dissertation, Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  • Al-Khayyal, Faiz A. (1986), “Linear, Quadratic and Bilinear Programming Approaches to the Linear Complementarity Problem,” European Journal of Operational Research 24 216–227.

    MathSciNet  MATH  Google Scholar 

  • Al-Khayyal, Faiz A. and Falk, J. E. (1983), “Jointly Constrained Biconvex Programming,” Mathematics of Operations Research 8 273–286.

    MathSciNet  MATH  Google Scholar 

  • Al-Khayyal, Faiz A., Horst, R., and Pardalos, P. M. (1992), “Global Optimization of Concave Functions subject to Quadratic Constraints: An Application in Nonlinear Bilevel Programming,” Annals of Operations Research. 94 125–147.

    MathSciNet  Google Scholar 

  • Al-Khayyal, Faiz A., and Larsen, C. (1990), “Global Optimization of a Quadratic Function subject to a Bounded Mixed Integer Constraint Set,” Annals of Operations Research 25 169–180.

    MathSciNet  MATH  Google Scholar 

  • Anderson, R. D. and Klee, V. L. (1952),“Convex Functions and Upper Semi-Continuous Collections,” Duke Mathematics Journal 19 349–357.

    MathSciNet  MATH  Google Scholar 

  • Aneja, Y. P., Aggarwal, V., and Nair, K. P. K. (1984), “On a Class of Quadratic Programs,” European Journal of Operational Research 18 62–70.

    MathSciNet  MATH  Google Scholar 

  • Bali, S. (1973), “Minimization of a Concave Function on a Bounded Convex Polyhedron,” Ph.D. Dissertation, University of California at Los Angeles, Los Angeles, California.

    Google Scholar 

  • Balinski, Michel L. (1961), “Fixed Cost Transportation Problems,” Naval Research Logistics Quarterly 8 41–54.

    MATH  Google Scholar 

  • Ban, V. T. (1983), “A Finite Algorithm for Minimizing a Concave Function under Linear Constraints and Its Application,” IFIP Working Conference on Recent Advances on System Modeling and Optimization, Hanoi.

    Google Scholar 

  • Bansal, P. P. and Jacobsen, S. E. (1975), “Characterization of Local Solutions for a Class of Nonconvex Programs,” Journal of Optimization Theory and Applications 15 549–564.

    MathSciNet  MATH  Google Scholar 

  • Barahona, Francisco (1986), “A Solvable Case for Quadratic 0–1 Programming,” Discrete Applied Mathematics 13 23–26.

    MathSciNet  MATH  Google Scholar 

  • Bard, J. F. and Falk, J. E. (1982), “A Separable Programming Approach to the Linear Complementarity Problem,” Computers and Operations Research 9 153–159.

    MathSciNet  Google Scholar 

  • Barr, R. S., Glover, F., and Klingman, D. (1981), “A New Optimization Method for Large Scale Fixed Charge Transportation Problems,” Operations Research 29 448–463.

    MathSciNet  MATH  Google Scholar 

  • Basar, T. and Olsder, G. J. (1982), Dynamic Noncooperative Game Theory Academic Press, New York.

    Google Scholar 

  • Batson, Robert G. (1986), “On Constrained Maxima of Convex Functions,” Operations Research Letters 5, 51–54.

    MathSciNet  MATH  Google Scholar 

  • Bauer, H. (1958), “Minimalstellan von funktionen und extremalpunkte,” Archives of Mathematics 9 389–393.

    MATH  Google Scholar 

  • Bazaraa, M. S. and Sherali, H. D. (1982), “On the Use of Exact and Heuristic Cutting Plane Methods for the Quadratic Assignment Problem,” Journal of the Operational Research Society 33 999–1003.

    MathSciNet  Google Scholar 

  • Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear Programming: Theory and Algorithms John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Bennett, K. P. and Mangasarian, O. L. (1992), “Bilinear Separation of Two Sets in n-Space,” Computer Sciences Technical Report No. 1109, Center for Parallel Optimization, University of Wisconsin, Madison, Wisconsin.

    Google Scholar 

  • BenSaad, Sihem (1992), “A New Cutting Plane Algorithm for a Class of Reverse Convex 0–1 Integer Programs,” in C. A. Floudas and P. M. Pardalos (eds.), Recent Advances in Global Optimization Princeton University Press, Princeton, New Jersey, 152–164.

    Google Scholar 

  • BenSaad, Sihem and Jacobsen, S. E. (1990), “A Level Set Algorithm for a Class of Reverse Convex Programs,” Annals of Operations Research 25 19–42.

    MathSciNet  Google Scholar 

  • Benson, Harold P. (1978), “Existence of Efficient Solutions for Vector Maximization Problems,” Journal of Optimization Theory and Applications 26 569–580.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1979), “Vector Maximization with Two Objective Functions,” Journal of Optimization Theory and Applications 28 253–257.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1982), “Algorithms for Parametric Nonconvex Programming,” Journal Of Optimization Theory and Applications 38 319–340.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1982a), “On the Convergence of Two Branch-and-Bound Algorithms for Non-convex Programming Problems,” Journal of Optimization Theory and Applications 36 129–134.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1984), “Optimization over the Efficient Set,” Journal of Mathematical Analysis and Applications 98 562–580.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1985), “A Finite Algorithm for Concave Minimization over a Polyhedron,” Naval Research Logistics Quarterly 32 165–177.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1985a), “Multiple Objective Linear Programming with Parametric Criteria Coefficients,”Management Science 31 461–474.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1986), “An Algorithm for Optimizing over the Weakly-Efficient Set,” European Journal of Operational Research 25, 192–199.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1986a), “A Branch and Bound-Relaxation Algorithm for Concave Minimization over a Convex Set,” Discussion Paper No. 130, Center for Econometrics and Decision Sciences, College of Business Administraton, University of Florida, Gainesville, Florida.

    Google Scholar 

  • Benson, Harold P. (1989), “On the Structure and Properties of a Linear Multilevel Programming Problem,” Journal of Optimization Theory and Applications 60 353–373.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1990), “Separable Concave Minimization via Partial Outer Approximation and Branch and Bound,” Operations Research Letters 9 389–394.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1991), “An All-Linear Programming Relaxation Algorithm for Optimizing over the Efficient Set,” Journal of Global Optimization 1 83–104.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. (1993), “A Bisection-Extreme Point Search Algorithm for Optimizing over the Efficient Set in the Linear Dependence Case,” Journal of Global Optimization .9 95–111.

    MathSciNet  Google Scholar 

  • Benson, Harold P. and Erenguc, S. S. (1988), “Using Convex Envelopes to Solve the Interactive Fixed Charge Linear Programming Problem,” Journal of Optimization Theory and Applications 59 223–246.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. and Erenguc, S. S. (1990), “An Algorithm for Concave Integer Minimization over a Polyhedron,” Naval Research Logistics 37 515–525.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P., Erenguc, S. S., and Horst, R. (1990), “A Note on Adapting Methods for Continuous Global Optimization to the Discrete Case,” Annals of Operations Research 25 243–252.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. and Horst, R. (1991), “A Branch and Bound-Outer Approximation Algorithm for Concave Minimization over a Convex Set,” Journal of Computers and Mathematics with Applications 21 67–76.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. and Morin, T. L. (1977), “The Vector Maximization Problem: Proper Efficiency and Stability,” SIAM Journal on Applied Mathematics 32 64–72.

    MathSciNet  MATH  Google Scholar 

  • Benson, Harold P. and Sayin, S. (1994), “A Finite Concave Minimization Algorithm using Branch and Bound and Neighbor Generation,” Journal of Global Optimization (to appear).

    Google Scholar 

  • Bitran, G. R., Magnanti, T. L., and Yanesse, H. H. (1984), “Approximation Methods for the Uncapacitated Dynamic Lot Size Problem,” Management Science 30 1121–1140.

    MathSciNet  MATH  Google Scholar 

  • Blankenship, J. W. and Falk, J. E. (1976), “Infinitely Constrained Optimization Problems,” Journal of Optimization Theory and Applications 19 261–281.

    MathSciNet  MATH  Google Scholar 

  • Blundet, W. R. and Black, J. A. (1984), The Land-Use/Transport System Pergamon Press, Sydney, Australia.

    Google Scholar 

  • Bolintineanu, S. (1990), “Minimization of a Quasi-Concave Function over an Efficient Set,” Working Paper, Department of Mathematics, La Trobe University, Bundoora, Australia.

    Google Scholar 

  • Bracken, J., Falk, J. E., and Miercort, F. A. (1977), “A Strategic Weapons Exchange Allocation Model,” Operations Research 25 968–976.

    MathSciNet  Google Scholar 

  • Bracken, J. and McCormick, G. P. (1968), Selected Applications of Nonlinear Programming John Wiley and Sons, New York.

    Google Scholar 

  • Bretthauer, Kurt M. (1992), “A Discrete Global Optimization Approach to Capacity Assignment in Computer Communication Networks,” Working Paper, Department of Business Analysis and Research, Texas A & M University, College Station, Texas (submitted).

    Google Scholar 

  • Bretthauer, Kurt M. (1992a), “A Penalty Framework for Branch and Bound Methods and Its Application to Concave Minimization,” Working Paper, Department of Business Analysis and Research, Texas A & M University, College Station, Texas (submitted).

    Google Scholar 

  • Bretthauer, Kurt M. and Cabot, A. V. (1994), “A Composite Branch and Bound, Cutting Plane Algorithm for Concave Minimization over a Polyhedron,” to appear in Computers and Operations Research.

    Google Scholar 

  • Bretthauer, Kurt M., Cabot, A. V., and Venkataramanan, M. A. (1994), “An Algorithm and New Penalties for Concave Integer Minimization over a Polyhedron,” to appear in Naval Research Logistics.

    Google Scholar 

  • Byrd, R. H., Dert, C. L., Rinnooy Kan, A. H. G., and Schnabel, R. B. (1990), “Concurrent Stochastic Methods for Global Optimization,” Mathematical Programming 46 1–30.

    MathSciNet  MATH  Google Scholar 

  • Cabot, A. Victor (1974), “Variations on a Cutting Plane Method for Solving Concave Minimization Problems with Linear Constraints,” Naval Research Logistics Quarterly 21 265–274.

    MathSciNet  MATH  Google Scholar 

  • Cabot, A. Victor and Erenguc, S. S. (1984), “Some Branch-and-Bound Procedures for Fixed Cost Transportation Problems,” Naval Resarch Logistics Quarterly 31 145–154.

    MathSciNet  MATH  Google Scholar 

  • Cabot, A. Victor and Erenguc, S. S. (1986), “A Branch and Bound Algorithm for Solving a Class of Nonlinear Integer Programming Problems,” Naval Research Logistics Quarterly 88 559–567.

    MathSciNet  Google Scholar 

  • Cabot, A. Victor and Francis, R. L. (1970), “Solving Certain Nonconvex Quadratic Minimization Problems by Ranking the Extreme Points,” Operations Research 18 82–86.

    MATH  Google Scholar 

  • Carrillo, Manuel J. (1977), “A Relaxation Algorithm for the Minimization of a Quasiconcave Function on a Convex Polyhedron,” Mathematical Programming 13 69–80.

    MathSciNet  MATH  Google Scholar 

  • Cassidy, R. G., Kirby, M. J. L., and Raike, W. M. (1971), “Efficient Distribution of Resources Through Three Levels of Government,” Management Science 17 462–473.

    Google Scholar 

  • Chandasekaran, R., Kumar, S., and Wagner, D. (1980), “Critical Path under Assignment Constraints: An Application of an Extreme Point Mathematical Programming Problem,” Journal of Information and Optimization Science 1 41–51.

    Google Scholar 

  • Chen, P. C., Hansen, P., and Jaumard, B. (1991), “On-Line and Off-Line Vertex Enumeration by Adjacency Lists,” Operations Research Letters 10 403–409.

    MathSciNet  MATH  Google Scholar 

  • Cheney, E. W. and Goldstein, A. A. (1959), “Newton’s Method for Convex Programming and Tchebycheff Approximation,” Numerische Mathematik 1 253–268.

    MathSciNet  MATH  Google Scholar 

  • Cottle, R. W. and Dantzig, G. B. (1968), “Complementary Pivot Theory of Mathematical Programming,” Linear Algebra and its Applications 1 103–125.

    MathSciNet  MATH  Google Scholar 

  • Cottle, R. W., Ginanessi, F., and Lions, J. L., eds. (1980), Variational Inequalities and Complementarity Problems John Wiley and Sons. New York.

    MATH  Google Scholar 

  • Danninger, G. and Bomze, I. M. (1993), “Using Copositivity for Global Optimality Criteria in Concave Quadratic Programming Problems,” to appear in Mathematical Programming.

    Google Scholar 

  • Dauer, Jerald P. (1991), “Optimization over the Efficient Set using an Active Constraint Approach,” Zeitschrift fur Operations Research 35 185–195.

    MathSciNet  MATH  Google Scholar 

  • Dessouky, M. I., Ghiassi, M., and Davis, W. J. (1986), “Estimates of the Minimum Nondominated Criterion Values in Multiple-Criteria Decision-Making,” Engineering Costs and Production Economics 10 95–104.

    Google Scholar 

  • Du, D.-Z. and Pardalos, P. M., eds. (1993), Network Optimization Problems: Algorithms, Complexity, and Applications World Scientific Publishing, River Edge, New Jersey.

    Google Scholar 

  • Duffm, R. J., Peterson, E. L., and Zener, C. (1967), Geometric Programming-Theory and Applications John Wiley and Sons, New York.

    Google Scholar 

  • Dutton. R., Hinman, G., and Millham, C B (1974), “The Optimal Location of Nuclear-Power Facilities in the Pacific Northwest,” Operations Research 22 478–487.

    Google Scholar 

  • Eaves, B. Curtis (1971), “The Linear Complementarity Problem,” Management Science 17 612–634.

    MathSciNet  MATH  Google Scholar 

  • Eaves, B. Curtis and Zangwill, W. I. (1971), “Generalized Cutting Plane Algorithms,” SIAM Journal on Control 9 529–542.

    MathSciNet  Google Scholar 

  • Ebiefung, A. A., and Kostreva, M. M. (1992), “Global Solvability of Generalized Linear Cornplementarity Problems and a Related Class of Polynomial Complementarity Problems,” in C. A. Floudas and P. M. Pardalos (eds.), Recent Advances in Global Optimization Princeton University Press, Princeton, New Jersey, pp. 102–124.

    Google Scholar 

  • Efroymson, M. A. and Ray, T. L. (1966), “A Branch and Bound Algorithm for Plant Location, Operations Research 14 361–368.

    Google Scholar 

  • Eggleston, H. G. (1958), Convexity Cambridge University Press, Cambridge, Great Britain.

    MATH  Google Scholar 

  • Ekeland, I. and Temam, R. (1976), Convex Analysis and Variational Problems North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Ellwein, L. B. (1970), “Fixed Charge Location-Allocation Problems with Capacity and Configuration Constraints,” Technical Report No 70–2, Department of Industrial Engineering, Stanford University, Stanford, California.

    Google Scholar 

  • Erenguc, S. S. and Benson, H. P. (1986), “The Interactive Fixed Charge Linear Programming Problem,” Naval Research Logistics Quarterly 33 157–177.

    MathSciNet  MATH  Google Scholar 

  • Erenguc, S. S. and Benson, H. P. (1991), “An Algorithm for Indefinite Integer Quadratic Programming,” Journal of Computers and Mathematics with Applications 21 99–106.

    MathSciNet  MATH  Google Scholar 

  • Evans Gerald W. (1984), “An Overview of Techniques for Solving Multiobjective Mathematical Programs,” Management Science 30 1268–1282.

    MathSciNet  MATH  Google Scholar 

  • Falk, James E. (1969), “Lagrange Multipliers and Nonconvex Programs,” SIAM Journal on Control 7 534–545.

    MathSciNet  MATH  Google Scholar 

  • Falk, James E. (1972), “An Algorithm for Locating Approximate Global Solutions of Nonconvex, Separable Problems,” Serial T-262, Institute of Management Sciences and Engineering, School of Engineering and Applied Science, George Washington University, Washington D. C.

    Google Scholar 

  • Falk, James E. (1973), “A Linear Max-Min Problem,” Mathematical Programming 5 169–188.

    MathSciNet  MATH  Google Scholar 

  • Falk, James E. and Hoffman, K. R. (1976), “A Successive Underestimation Method for Concave Minimization Problems,” Mathematics of Operations Research 1 251–259.

    MATH  Google Scholar 

  • Falk, James E. and Hoffmann, K. R. (1986), “Concave Minimization via Collapsing Polytopes,” Operations Research 34 919–929.

    MathSciNet  MATH  Google Scholar 

  • Falk, James E. and Soland, R. M. (1969), “An Algorithm for Separable Nonconvex Programming Problems,” Management Science 15 550–569.

    MathSciNet  MATH  Google Scholar 

  • Florian, Michael (1986), “Nonlinear Cost Network Models in Transportation Analysis,” Mathematical Programming Study 26 167–196.

    MathSciNet  MATH  Google Scholar 

  • Florian, Michael and Robillard, P. (1971), “An Implicit Enumeration Algorithm for the Concave Cost Network Flow Problem,” Management Science 18 184–193.

    MATH  Google Scholar 

  • Florian, Michael, Robillard, P., and Achim, C. (1972), “Solving Large-Scale Concave Cost Network Flow Problems,” Publication No. 103, Département d’informatique, Université de Montréal, Montréal, Canada.

    Google Scholar 

  • Floudas, Christodoulos and Pardalos, Panos M. (1990), A Collection of Test Problems for Constrained Global Optimization Algorithms Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Floudas, Christodoulos and Pardalos, P. M., eds. (1992), Recent Advances in Global Optimization Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Forgo, F. (1988), Nonconvex Programming Akademiai Kiado, Budapest.

    MATH  Google Scholar 

  • Fortuny-Amat, J. and McCarl, B. (1981), “A Representation and Economic Interpretation of a Two-level Programming Problem,” Journal of the Operational Research Society 32 783–792.

    MathSciNet  MATH  Google Scholar 

  • Frieze, A. M. (1974), “A Bilinear Programming Formulation of the 3-Dimensional Assignment Problem,” Mathematical Programming 7 376–379.

    MathSciNet  MATH  Google Scholar 

  • Fülop, Janos (1985), “Minimizing a Separable Piecewise Linear Continuous Function Subject to Convex Constraints of the Same Type by Concave Minimization,” Zeitschrift fur Angewandte Mathematik und Mechanik 65 310–311.

    Google Scholar 

  • Fiilop, Janos (1988), “A Finite Procedure to Generate Feasible Points for the Extreme Point Mathematical Programming Problem,” European Journal of Operational Research .95 228–241.

    Google Scholar 

  • Fülop, Janos (1993), “A Cutting Plane Algorithm for Linear Optimization over the Efficient Set,” to appear in Proceedings of the Fourth International Workshop on Generalized Convexity Springer-Verlag, Berlin.

    Google Scholar 

  • Gallo, G. and Ulkücü, A. (1977), “Bilinear Programming: An Exact Algorithm,” Mathematical Programming 12 173–194.

    MathSciNet  MATH  Google Scholar 

  • Garcia, C. B. and Zangwill, W. I. (1981), Pathways to Solutions, Fixed Points, and Equilibria Prentice-Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Garcia-Palomares, U. and Colmenares, W. (1991), “On the Minimization of a Quasi-Concave Function subject to Linear Constraints,” Operations Research Letters 10 137–141.

    MathSciNet  MATH  Google Scholar 

  • Garfinkel, Robert S. and Nemhauser, G. L. (1972), Integer Programming John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Geoffrion, Arthur M. (1967), “Solving Bicriterion Mathematical Programs,” Operations Research 15, 39–54.

    MathSciNet  MATH  Google Scholar 

  • Giannessi, F. and Niccolucci, F. (1976), “Connections Between Nonlinear and Integer Programming Problems,” Symposia Mathematica (Instituto Nazionale di Alta Mathematica) 19 161–176.

    MathSciNet  Google Scholar 

  • Gilmore, P. C. (1962), “Optimal and Suboptimal Algorithms for the Quadratic Assignment Problem,” SIAM Journal 10, 305–313.

    MathSciNet  MATH  Google Scholar 

  • Glover, Fred W. (1975), “Polyhedral Annexation in Mixed Integer and Combinatorial Programming,” Mathematical Programming 8 161–188.

    Google Scholar 

  • Gomory, R. E. (1958), “Outline of an Algorithm for Integer Solutions to Linear Programs,” Bulletin of the American Mathematical Society 64, 275–278.

    MathSciNet  MATH  Google Scholar 

  • Gomory, R. E. (1960), “Solving Linear Programming Problems in Integers,” in R. Bellman and M. Hall (eds.), Combinatorial Analysis American Mathematical Society, Providence, Rhode Island, pp. 211–215.

    Google Scholar 

  • Gould, F. J. and Tolle, J. W. (1983), Complementary Pivoting on a Pseudomanifold Structure with Applications in the Decision Sciences, Heldermann, Berlin.

    Google Scholar 

  • Gray, Paul (1971), “Exact Solution of the Fixed Charge Transportation Problem,” Operations Research 19, 1529–1538.

    MATH  Google Scholar 

  • Grotte, Jeffrey H. (1975), “A Nontarget Damage Minimizer which Achieves Targetting Objectives: Model Description and Users Guide,” Working Paper WP-8, Institute of Defense Analyses, Arlington, Virginia.

    Google Scholar 

  • Grotte, Jeffrey H. (1978), “Applications of a Branch and Bound Algorithm for Separable, Piecewise Linear Optimizations,” Working Paper, Institute for Defense Analysis, Arlington, Virginia.

    Google Scholar 

  • Guisewite, G. M. and Pardalos, P. M. (1990), “Minimum Concave-Cost Network Flow Problems: Applications, Complexity, and Algorithms,” Annals of Operations Research 25 75–100.

    MathSciNet  MATH  Google Scholar 

  • Hadley, G. (1964), Nonlinear and Dynamic Programming Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  • Hager, W. W., Pardalos, P. M., Roussos, I. M., and Sahinoglou, H. D. (1991), “Active Constraints, Indefinite Quadratic Test Problems, and Complexity,” Journal of Optimization Theory and Applications 68 499–511.

    MathSciNet  MATH  Google Scholar 

  • Hamami, M. and Jacobsen, S. E. (1988), “Exhaustive Nondegenerate Conical Processes for Concave Minimization on Convex Polytopes,” Mathematics of Operations Research 13, 479–487.

    MathSciNet  MATH  Google Scholar 

  • Han, Chi-Geun, Pardalos, P., and Ye, Y. (1992), “On the Solution of Indefinite Quadratic Problems Using an Interior-Point Algorithm,” Informatica .9 474–496.

    MathSciNet  Google Scholar 

  • Hartman, P. (1959), “On Functions Representable as a Difference of Convex Functions,” Pacific Journal of Mathematics 9, 707–713.

    MathSciNet  MATH  Google Scholar 

  • Henderson, J. M. and Quandt, R. E. (1971), Microeconomic Theory McGraw Hill, New York.

    MATH  Google Scholar 

  • Hiriart-Urruty, J. B. (1985), “Generalized Differentiability, Duality and Optimization for Problems dealing with Differences of Convex Functions,” in J. Ponstein (ed.), Convexity and Duality in Optimization Springer-Verlag, Berlin, pp. 37–70.

    Google Scholar 

  • Hirsch, W. M. and Dantzig, G. B. (1954), “The Fixed Charge Problem,” Research Memorandum No. RM-1383, The Rand Corporation, Santa Monica, California.

    Google Scholar 

  • Hirsch, W. M. and Hoffman, A. J. (1961), “Extreme Varieties, Concave Functions, and the Fixed Charge Problem,” Communications on Pure and Applied Mathematics 14 355–369.

    MathSciNet  MATH  Google Scholar 

  • Hoffman, Karla L. (1981), “A Method for Globally Minimizing Concave Functions over Convex Sets,” Mathematical Programming 20, 22–32.

    MathSciNet  MATH  Google Scholar 

  • Hoffman, K. and Kunze, R. (1961), Linear Algebra Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Horst, Reiner (1976), “An Algorithm for Nonconvex Programming Problems,” Mathematical Programming 10 312–321.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner (1980), “A Note on the Convergence of an Algorithm for Nonconvex Programming Problems,” Mathematical Programming 19 237–238.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner (1984), “On the Convexification of Nonlinear Programming Problems: An Applications-Oriented Survey,” European Journal of Operational Research 15 382–392.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner (1984a), “On the Global Minimization of Concave Functions: Introduction and Survey,” Operations Reserch Spektrum 6, 195–205.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner (1986), “A General Class of Branch-and-Bound Methods in Global Optimization with some New Approaches for Concave Minimization,” Journal of Optimization Theory and Applications 51 271–291.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner (1988), “Deterministic Global Optimization with Partition Sets whose Feasibility is Not Known: Application to Concave Minimization, Reverse Convex Constraints, dc-Programming, and Lipshitzian Optimization,” Journal of Optimization Theory and Applications 58 11–37.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner (1989), “On Consistency of Bounding Operations in Deterministic Global Optimization,” Journal of Optimization Theory and Applications 61 143–146.

    MathSciNet  Google Scholar 

  • Horst, Reiner (1990), “Deterministic Methods in Constrained Global Optimization: Some Recent Advances and New Fields of Application,” Naval Research Logistics 37 433–471.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner (1991), “On the Vertex Enumeration Problem in Cutting Plane Algorithms of Global Optimization,” in G. Fandel and H. Gehring (eds.), Operations Research Springer-Verlag, Berlin, pp. 13–22.

    Google Scholar 

  • Horst, Reiner, Phong, T. Q., and Thoai, N. V. (1990), “On Solving General Reverse Convex Programming Problems by a Sequence of Linear Programs and Line Searches,” Annals of Operations Research 25, 1–18.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner, Phong, T. Q., Thoai, N. V., and DeVries, J. (1991), “On Solving a d.c. Programming Problem by a Sequence of Linear Programs,” Journal of Global Optimization 1 183–203.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner and Thach, P. T. (1992), “A Decomposition Method for Quadratic Minimization Problems with Integer Variables,” in P. M. Pardalos (ed.), Advances in Optimization and Parallel Computing Elsevier Science Publishers, Amsterdam, pp. 143–163.

    Google Scholar 

  • Horst, Reiner and Thoai, N. V. (1989), “Modification, Implementation and Comparison of Three Algorithms for Globally Solving Linearly Constrained Concave Minimization Problems,” Computing 42 271–289.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner and Thoai, N. V. (1992), “Conical Algorithm for the Global Minimization of Linearly Constrained Decomposable Concave Minimization Problems,” Journal of Optimization Theory and Applications 74 469–486.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner, Thoai, N. V., and Benson, H. P. (1988), “Concave Minimization via Conical Partitions and Polyhedral Outer Approximation,” Discussion Paper No. 140, Center for Econometrics and Decision Sciences, College of Business Administration, University of Florida, Gainesville, Florida.

    Google Scholar 

  • Horst, Reiner, Thoai, N. V., and Benson, H. P. (1991), “Concave Minimization via Conical Partitions and Polyhedral Outer Approximation,” Mathematical Programming 50 259–274.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner, Thoai, N. V., and DeVries, J. (1988), “On Finding New Vertices and Redundant Constraints in Cutting Plane Algorithms for Global Optimization,” Operations Research Letters 7 85–90.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner, Thoai, N. V., and DeVries, J. (1992), “On Geometry and Convergence of a Class of Simplicial Covers,” Optimization 25 53–64.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner, Thoai, N. V., and DeVries, J. (1992a), “A New Simplicial Cover Technique in Constrained Global Optimization,” Journal of Global Optimization 2 1–19.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner, Thoai, N. V., and Tuy, H. (1987), “Outer Approximation by Polyhedral Convex Sets,” Operations Research Spektrum 9 153–159.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner, Thoai, N. V., and Tuy, H. (1989), “On an Outer Approximation Concept in Global Optimization,” Optimization 20 255–264.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner and Tuy, H. (1987), “On the Convergence of Global Methods in Multiextremal Optimization,” Journal of Optimization Theory and Applications 54 253–271.

    MathSciNet  MATH  Google Scholar 

  • Horst, Reiner and Tuy, H. (1991), “The Geometric Complementarity Problem and Transcending Stationarity in Global Optimization,” Applied Geometry and Discrete Mathematics 4 341–354.

    Google Scholar 

  • Horst, Reiner and Tuy, H. (1993), Global Optimization: Deterministic Approaches Springer-Verlag, Berlin, Second Revised Edition.

    Google Scholar 

  • Idrissi, H., Loridan, P., and Michelot, C. (1988), “Approximation of Solutions for Location Problems,” Journal of Optimization Theory and Applications 56 127–143.

    MathSciNet  MATH  Google Scholar 

  • Ioffe, A. D. and Tihomirov, V. M. (1979), Theory of Extremal Problems North-Holland, Amsterdam

    MATH  Google Scholar 

  • Isermann, H. and Steuer, R. (1987), “Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set,” European Journal of Operational Reserach 33 91–97.

    MathSciNet  Google Scholar 

  • Ivanilov, Y. I. and Mukhamediev, B. M. (1976), “An Algorithm for Solving the Linear Max-Min Problem,” Tekhnike Kibernitika 6 3–10 (in Russian).

    Google Scholar 

  • Jacobsen, Stephen E. (1981), “Convergence of a Tuy-Type Algorithm for Concave Minimization subject to Linear Inequality Constraints,” Applied Mathematics and Optimization 7 1–9.

    MathSciNet  MATH  Google Scholar 

  • Jones, A. P. and Soland, R. M. (1967), “A Branch-and-Bound Algorithm for Multilevel Fixed-Cost Problems,” RAC-TP-285, Research Analysis Corporation, McLean, Virginia.

    Google Scholar 

  • Jones, A. P. and Soland, R. M. (1969), “A Branch-and-Bound Algorithm for Multilevel Fixed-Charge Problems,” Management Science 16 67–76.

    MATH  Google Scholar 

  • Kalantari, Bateman (1986), “Quadratic Functions with Exponential Number of Local Maxima,” Operations Research Letters 5, 47–49.

    MathSciNet  MATH  Google Scholar 

  • Kalantari, Bateman and Bagchi, A. (1990), “An Algorithm for Quadratic Zero-One Programs,” Naval Research Logistics 87 527–538.

    MathSciNet  Google Scholar 

  • Kalantari, Batman and Rosen, J. B. (1982), “Penalty for Zero-One Integer Equivalent Problems,” Mathematical Programming 24 229–232.

    MathSciNet  MATH  Google Scholar 

  • Kalantari, Bateman and Rosen, J. B. (1987), “An Algorithm for Global Minimization of Linearly Constrained Concave Quadratic Functions,” Mathematics of Operations Research 12 544–561.

    MathSciNet  Google Scholar 

  • Kao, Edward P. (1979), “A Multi-Product Lot-Size Model with Individual and Joint Set-Up Costs,” Operations Research 27 279–289.

    MATH  Google Scholar 

  • Kelley, J. E., Jr. (1960), “The Cutting-Plane Method for Solving Convex Programs,” SIAM Journal 8 703–712.

    MathSciNet  Google Scholar 

  • Kirby, M. J. L., Love, H. P., and Swamp, K. (1972), “Extreme Point Mathematical Programming,” Management Science 18 540–549.

    MathSciNet  MATH  Google Scholar 

  • Kleibohm, K. (1967), “Remarks on the Non-Convex Programming Problem,” Unternehmensforschung 11 49–60 (in German).

    MathSciNet  MATH  Google Scholar 

  • Klinz, B. and Tuy, H. (1993), “Minimum Concave-Cost Network Flow Problems with a Single Nonlinear Arc Cost,” in D.-Z. Du and P. M. Pardalos (eds.), Network Optimization Problems: Algorithms, Complexity, and Applications World Scientific Publishing, River Edge, New Jersey.

    Google Scholar 

  • Koehler, G. J., Whinston, A. B., and Wright, G. P. (1975), Optimization over Leontief Substitution Systems North Holland, Amsterdam.

    MATH  Google Scholar 

  • Kovno, Hiroshi (1971), “Bilinear Programming, Part II: Applications of Bilinear Programming,” Technical Report No. 71–10, Operations Research House, Stanford University, Stanford, California.

    Google Scholar 

  • Konno, Hiroshi and Inori, M. (1988), “Bond Portfolio Optimization by Bilinear Fractional Programming,” Journal of the Operations Research Society of Japan 32 143–158.

    MathSciNet  Google Scholar 

  • Konno, Hiroshi and Kuno, T. (1990), “Generalized Linear Multiplicative and Fractional Programming,” Annals of Operations Research 25 147–161.

    MathSciNet  MATH  Google Scholar 

  • Krarup, J. and Bilde, O. (1977), “Plant Location, Set Covering, and Economic Lot-Size: An 0(mn) Algorithm for Structured Problems,” inNumerische Methoden bei Optimierungsaufgaben, Band 3: Optimierung bei Graphentheoretischen und Ganzzahlligen Problemen, Birkhauser 155–186.

    Google Scholar 

  • Kumar, S. and Wagner, D. (1979), “Some Algorithms for Solving Extreme Point Mathematical Programming Problems,” New Zealand Journal of Operations Research 7 127–149.

    Google Scholar 

  • Kuno, T. and Konno, H. (1991), “A Parametric Successive Underestimation Method for Convex Multiplicative Problems,” Journal of Global Optimization 1 267–285.

    MathSciNet  MATH  Google Scholar 

  • Land, A. H. and Doig, A. G. (1960), “An Automatic Method for Solving Discrete Programming Problems,” Econometrica 28 497–520.

    MathSciNet  MATH  Google Scholar 

  • Lemaréchal, Claude (1989), “Nondifferentiable Optimization,” in G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd (eds.), Handbooks in Operations Research and Management Science 1: Optimization North Holland, Amsterdam, pp. 529–572.

    Google Scholar 

  • Lemke, Carlton E. (1980), “A Survey of Complementarity Theory,” in R. W. Cottle, F. Giannessi, and J. L. Lions (eds.), Variational Inequalitites and Complementarity Problems: Theory and Applications John Wiley and Sons, New York, pp. 213–239.

    Google Scholar 

  • Luenberger, David G. (1984), Introduction to Linear and Nonlinear Programming Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Magnanti, T. L. and Wong, R. T. (1984), “Network Design and Transportation Planning: Models and Algorithms,” Transportation Science 18 1–55.

    Google Scholar 

  • Majthay, A. and Whinston, A. (1974), “Quasi-Concave Minimization subject to Linear Constraints,” Discrete Mathematics 9 35–59.

    MathSciNet  MATH  Google Scholar 

  • Maling, K., Mueller, S. H., and Heller, W. R. (1982), “On Finding Most Optimal Rectangular Package Plans,” Proceedings of the 19th Design Automation Conference 663–670.

    Google Scholar 

  • Mangasarian, Olvi L. (1964), “Equilibrium Points of Bimatrix Games,” SIAM Journal 12 778–780.

    MathSciNet  Google Scholar 

  • Mangasarian, Olvi L. (1969), Nonlinear Programming McGraw-Hill, New York.

    MATH  Google Scholar 

  • Mangasarian, Olvi L. and Stone, H. (1964), “Two Person Nonzero-Sum Games and Quadratic Programming,” Journal of Mathematical Analysis and Applications 9 345–355.

    MathSciNet  Google Scholar 

  • Manne, Alan S. (1964), “Plant Location Under Economies of Scale - Decentralization and Computation,” Managment Science 11 213–235.

    MATH  Google Scholar 

  • Martos, B. (1965), “The Direct Power of Adjacent Vertex Programming Methods,” Management Science 12 241–252.

    MathSciNet  MATH  Google Scholar 

  • Mattheiss, Theodore H. (1973), “An Algorithm for the Determination of Irrelevant Constraints and All Vertices in Systems of Linear Inequalities,” Operations Research 21 247–260.

    MathSciNet  MATH  Google Scholar 

  • McCormick, Garth P. (1972), “Attempts to Calculate Global Solutions of Problems That May Have Local Minima,” in F. A. Lootsma (ed.), Numerical Methods for Nonlinear Optimization Academic Press, New York, pp. 209–221.

    Google Scholar 

  • McCormick, Garth P. (1976), “Computability of Global Solutions to Factorable Nonconvex Programs: Part I - Convex Underestimating Problems,” Mathematical Programming 10 147–175.

    MathSciNet  MATH  Google Scholar 

  • McCormick, Garth P. (1983), Nonlinear Programming: Theory, Algorithms, and Applications John Wiley and Sons, New York.

    MATH  Google Scholar 

  • McKeown, Patrick (1975), “A Vertex Ranking Procedure for Solving the Linear Fixed-Charge Problem,” Operations Research 23 1182–1191.

    MathSciNet  Google Scholar 

  • Mercan, H. Murat (1989), “Multi-Family Dynamic Lot Sizing Problems with Coordinated Replenishements,” Ph.D. Dissertation, Department of Decision and Information Sciences, University of Florida, Gainesville, Florida.

    Google Scholar 

  • Murty, Katta G. (1968), “Solving the Fixed Charge Problem by Ranking the Extreme Points,” Operations Research 16 268–279.

    MATH  Google Scholar 

  • Murty, Katta G. (1988), Linear Complementarity, Linear and Nonlinear Programming Helder-mann Verlag, Berlin.

    MATH  Google Scholar 

  • Muu, L. D. and Oettli, W. (1991), “A Method for Minimizing a Convex-Concave Function over a Convex Set,” Journal of Optimization Theory and Applications 70 337–384.

    MathSciNet  Google Scholar 

  • Neebe, A. W. and Rao, M. R. (1983), “An Algorithm for the Fixed Charge Assignment of Users to Sources Problem,” Journal of the Operational Research Society 34 1107–1115.

    MATH  Google Scholar 

  • Nemhauser, G. L. and Wolsey, L. A. (1988), Integer and Combinatorial Optimization John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Nemhauser, G. L. and Wolsey, L. A. (1989), “Integer Programming,” in G. L. Nemhauser, A. H. G Rinnooy Kan, and M. J. Todd (eds.), Handbooks in Operations Research and Management Science 1: Optimization North Holland, Amsterdam, pp. 447–527.

    Google Scholar 

  • Neumaier, Arnold (1992), “An Optimality Criterion for Global Quadratic Optimization,” Journal of Global Optimization 2 201–208.

    MathSciNet  MATH  Google Scholar 

  • Oi, W. Y. and Hurter, A. P., Jr. (1965), Economics of Private Truck Transportation, William C. Brown Company, Dubuque, Iowa.

    Google Scholar 

  • Padberg, M. W., Van Roy, T. J., and Wolsey, L. A. (1985), “Valid Linear Inequalities for Fixed Charge Problems,” Operations Research 33 842–861.

    MathSciNet  MATH  Google Scholar 

  • Pardalos, Panos M. (1990), “Polynomial Time Algorithms for some Classes of Constrained Non-convex Quadratic Problems,” Optimization 21 843–853.

    MathSciNet  MATH  Google Scholar 

  • Pardalos, Panos M. (1991), “Computational Techniques for Solving Global Optimization Problems,” Working Paper, Department of Industrial and Systems Engineering, University of Florida, Gainesvillle, Florida.

    Google Scholar 

  • Pardalos, Panos M (1991a), “Global Optimization Algorithms for Linearly Constrained Indefinite Quadratic Problems,” Computers and Mathematics with Applications 21 87–97.

    MathSciNet  MATH  Google Scholar 

  • Pardalos, Panos M. (1993), Complexity in Numerical Optimization World Scientific Publishing, River Edge, New Jersey.

    MATH  Google Scholar 

  • Pardalos, Panos M., Glick, J. H., and Rosen, J. B. (1987), “Global Minimization of Indefinite Quadratic Problems.” Computing 39 281–291.

    MathSciNet  MATH  Google Scholar 

  • Pardalos, Panos M. and Li, Y. (1993), “Integer Programming,” in C. R. Rao (ed.), Handbook of Statistics, Volume 9 Elsevier Science Publishers, New York, 279–302.

    Google Scholar 

  • Pardalos, Panos M., Phillips, A. T., and Rosen, J. B. (1993), Topics in Parallel Computing in Mathematical Programming Science Press.

    Google Scholar 

  • Pardalos, Panos M. and Rosen, J. B. (1986), “Methods for Global Concave Minimization: A Bibliographic Survey,” SIAM Review 28 367–379.

    MathSciNet  MATH  Google Scholar 

  • Pardalos, Panos M. and Rosen, J. B. (1987), Constrained Global Optimization: Algorithms and Applications Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Pardalos, Panos M. and Rosen, J. B. (1988), “Global Optimization Approach to the Linear Cornplementarity Problem,” SIAM Journal on Scientific and Statistical Computing 9 341–353.

    MathSciNet  MATH  Google Scholar 

  • Pardalos, Panos M. and Schnitger, G. (1988), “Checking Local Optimality in Constrained Quadratic Programming is NP-Hard,” Operations Research Letters 7 33–35.

    MathSciNet  MATH  Google Scholar 

  • Parker, R. G. and Rardin, R. L. (1988), Discrete Optimization, Academic Press, Boston.

    MATH  Google Scholar 

  • Philip, J. (1972), “Algorithms for the Vector Maximization Problem,” Mathematical Programming 2, 207–229.

    MathSciNet  Google Scholar 

  • Phillips, A. T. (1989), “A Separable Concave Quadratic Global Minimization Formulation of the Linear Complementarity Problem,” Working Paper, Computer Science Department, United States Naval Academy, Annapolis, Maryland.

    MATH  Google Scholar 

  • Phillips, A. T. and Rosen, J. B. (1988), “A Parallel Algorithm for Constrained Concave Quadratic Global Minimization,” Mathematical Programming 42 421–448.

    MathSciNet  MATH  Google Scholar 

  • Phillips, A. T. and Rosen, J. B. (1990), “A Parallel Algorithm for Partially Separable Non-Convex Global Minimization: Linear Constraints,” Annals of Operations Research 25 101–118.

    MathSciNet  MATH  Google Scholar 

  • Phillips, A. T. and Rosen, J. B. (1993), “Sufficient Conditions for Solving Linearly Constrained Separable Concave Global Minimization Problems,” Journal of Global Optimization 3 79–94.

    MathSciNet  Google Scholar 

  • Phillips, A. T., Rosen, J. B., and Van Vliet, M. (1992), “A Parallel Stochastic Method for Solving Linearly Constrained Concave Global Minimization Problems,” Journal of Global Optimization 2, 243–258.

    MATH  Google Scholar 

  • Phong, Thai Q. (1993), “On Solving Convex Programs with an Additional Reverse Convex Constraint via Conical Partitions and Polyhedral Outer Approximations,” Working Paper, Laboratoire de Mathématiques et Informatique, Institut National des Sciences Appliquées, Mont St. Aignan, France.

    Google Scholar 

  • Pochet, Y. (1988), “Valid Inequalities and Separation for Capacitated Economic Lot Sizing,” Operaions Research Letters 7, 109–116.

    MathSciNet  MATH  Google Scholar 

  • Puri, M. C. and Swarup, K. (1973), “Strong-Cut Enumerative Procedure for Extreme Point Mathematical Programming Problems,” Zeitschrift fir Operations Research 17 97–105.

    MathSciNet  MATH  Google Scholar 

  • Raghavachari, Madabhushi (1969), “On Connections between Zero-One Integer Programming and Concave Programming under Linear Constraints,” Operations Research 17, 680–684.

    MathSciNet  MATH  Google Scholar 

  • Rech, P. and Barton, L. G. (1970), “A Non-Convex Transportation Algorithm,” in E. M. L. Beale (ed.), Applications of Mathematical Programming Techniques American Elsevier Publishing, New York, pp. 250–260.

    Google Scholar 

  • Reeves, Gary R. (1975), “Global Minimization in Nonconvex All-Quadratic Programming,” Management Science 22, 76–86.

    MathSciNet  MATH  Google Scholar 

  • Rockafellar, R. Tyrrell (1970), Convex Analysis Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  • Rosen, J. Ben (1983), “Global Minimization of a Linearly Constrained Concave Function by Partition of Feasible Domain,” Mathematics of Operations Research 8 215–230.

    MathSciNet  MATH  Google Scholar 

  • Rosen, J. Ben and Pardalos, P. M. (1986), “Global Minimization of Large-Scale Constrained Concave Quadratic Problems by Separable Programming,” Mathematical Programming .94 163–174.

    MathSciNet  Google Scholar 

  • Rosen, J. Ben and Van Vliet, M. (1987), “A Parallel Stochastic Method for the Constrained Concave Global Minimization Problem,” Report 8734/A, Econometric Institute, Erasmus University, Rotterdam, The Netherlands.

    Google Scholar 

  • Rubin, David S. (1975), “Vertex Ranking and Cardinality Constrained Linear Programs,” Operations Research 23, 555–565.

    MathSciNet  MATH  Google Scholar 

  • Rutenberg, D. P. (1968), “Multi Product Plant Location under Economies of Scale in Production and Transportation,” Management Sciences Research Report No. 123, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

    Google Scholar 

  • Sadagopan, S. and Ravindran, A. (1982), “A Vertex Ranking Algorithm for the Fixed-Charge Transportation Problem,” Journal of Optimization Theory and Applications 37 221–230.

    MathSciNet  MATH  Google Scholar 

  • Schaible, Siegfried (1973), “On Factored Quadratic Programs,” Zeitschrift fir Operations Research 17, 179–181.

    MathSciNet  MATH  Google Scholar 

  • Sen, S. and Sherali, H. D. (1985), “A Branch and Bound Algorithm for Extreme Point Mathematical Programming Problems,” Discrete Applied Mathematics 11 265–280.

    MathSciNet  MATH  Google Scholar 

  • Sen, S. and Whiteson, A. (1985), “A Cone Splitting Algorithm for Reverse Convex Programming,” Proceedings of IEEE Conference on Systems, Man, and Cybernetics, Tucson, Arizona, 656–660.

    Google Scholar 

  • Shaftel, T. L. and Thompson, G. L. (1977), “A Simplex-Like Algorithm for the Continuous Modular Design Problem,” Operations Research 25, 788–807.

    MathSciNet  Google Scholar 

  • Sherali, H. D. and Alameddine, A. (1992), “A New Reformulation-Linearization Technique for Bilinear Programming Problems,” Journal of Global Optimization 2 279–410.

    MathSciNet  Google Scholar 

  • Sherali, H. D., Krishnan, R., and Al-Khayyal, F. A. (1992), “A Reformulation-LinearizationEnumeration Approach for Linear Complementarity Problems,” Working Paper, Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  • Sherali, H. D. and Sen, S. (1985), “A Disjunctive Cutting Plane Algorithm for the Extreme Point Mathematical Programming Problem,” Opaearch 22 83–94.

    MathSciNet  MATH  Google Scholar 

  • Sherali, H. D. and Shetty, C. M. (1980), “A Finitely Convergent Algorithm for Bilinear Programming Problems using Polar Cuts and Disjunctive Face Cuts,” Mathematical Programming 19 14–31.

    MathSciNet  MATH  Google Scholar 

  • Sherali, H. D. and Tuncbilek, C. H. (1992), “A Squared-Euclidean Distance Location-Allocation Problem,” Naval Research Logistics 99 447–469.

    MathSciNet  Google Scholar 

  • Shetty, C. M. and Sherali, H. D. (1980), “Rectilinear Distance Location-Allocation Problem: A Simplex Based Algorithm,” Proceedings of the International Symposium on Extremal Methods and Systems Analyses Springer-Verlag, Berlin, pp. 442–464.

    Google Scholar 

  • Shor, N. Z. (1985), Minimization Methods for Nondiferentiable Functions Springer-Verlag, Berlin.

    Google Scholar 

  • Soland, Richard M. (1971), “An Algorithm for Separable Nonconvex Programming Problems II: Nonconvex Constraints,” Management Science 17 759–773.

    MathSciNet  MATH  Google Scholar 

  • Soland, Richard M. (1974), “Optimal Facility Location with Concave Costs,” Operations Research 22373–382.

    MathSciNet  Google Scholar 

  • Spielberg, Kurt (1969), “An Algorithm for the Simple Plant Location Problem with Some Side Conditions,” Operations Research 17 85–111.

    MATH  Google Scholar 

  • Steinberg, David I. (1970), “The Fixed Charge Problem,” Naval Research Logistics Quarterly 17 217–235.

    MathSciNet  MATH  Google Scholar 

  • Steuer, Ralph E. (1986), Multiple Criteria Optimization: Theory, Computation, and Application John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Stone, R. E. (1981), “Geometric Aspects of the Linear Complementarity Problem,” Technical Report SOL81–6, Department of Operations Research, Stanford University, Stanford, California.

    Google Scholar 

  • Stuart, E. L., Phillips, A. T., and Rosen, J. B. (1988), “Fast Approximate Solution of Large-Scale Constrained Global Optimization Problems,” Technical Report TR88–9, Computer Science Department, Univeristy of Minnesota, Minneapolis, Minnesota.

    Google Scholar 

  • Suhl, U. (1985), “Solving Large Scale Mixed Integer Programs with Fixed Charge Variables,” Mathematical Programming .92 165–182.

    MathSciNet  Google Scholar 

  • Taha, Hamdy A. (1972), “On the Solution of Zero-One Linear Programs by Ranking the Extreme Points,” Technical Report No. 71–2, University of Arkansas, Fayetteville, Arkansas.

    Google Scholar 

  • Taha, Hamdy A. (1973), “Concave Minimization over a Convex Polyhedron,” Naval Research Logistics Quarterly 20 533–548.

    MathSciNet  MATH  Google Scholar 

  • Thach, Phan Thien (1991), “Quasiconjugates of Functions, Duality Relationship between Quasi-convex Minimization under a Reverse Convex Constraint and Quasiconvex Maximization under a Convex Constraint and its Applications,” Journal of Mathematical Analysis and Applications 159 299–322.

    MathSciNet  MATH  Google Scholar 

  • Thach, Phan Thien and Tuy, H. (1990), “The Relief Indicator Method for Constrained Global Optimization,” Naval Research Logistics 37 473–497.

    MathSciNet  MATH  Google Scholar 

  • Thakur, Lakshman S. (1991), “Domain Contraction in Nonlinear Programming: Minimizing a Quadratic Concave Objective over a Polyhedron,” Mathematics of Operations Research 16 390–407.

    MathSciNet  MATH  Google Scholar 

  • Thieu, Tran Vu (1980), “Relationship between Bilinear Programming and Concave Minimization under Linear Constraints,” Acta Mathematica Vietnamica 5, 106–113.

    MathSciNet  MATH  Google Scholar 

  • Thieu, Tran Vu (1987), “Solving the Lay-Out Planning Problem with Concave Cost,” Essays in Nonlinear Analysis and Optimization, Institute of Mathematics, Hanoi, pp. 101–110.

    Google Scholar 

  • Thieu, Tran Vu (1988), “A Finite Method for Globally Minimizing a Concave Function over an Unbounded Polyhedral Convex Set and its Applications,” Acta Mathematica Hungarica 52 21–36.

    MathSciNet  MATH  Google Scholar 

  • Thieu, Tran Vu, Tam, B. T., and Ban, V. T. (1983), “An Outer Approximation Method for Globally Minimizing a Concave Function over a Compact Convex Set,” Acta Mathematica Vietnamica 8 21–40.

    MathSciNet  MATH  Google Scholar 

  • Thoai, Nguyen V. (1987), “On Canonical d.c. Programs and Applications,” Essays on Nonlinear Analysis and Optimization Problems Institute of Mathematics, Hanoi, 88–100.

    Google Scholar 

  • Thoai, Nguyen V. (1988), “A Modified Version of Tuy’s Method for Solving d.c. Programming Problems,” Optimization 19 665–674.

    MathSciNet  MATH  Google Scholar 

  • Thoai, Nguyen V. (1991), “A Global Optimization Approach for Solving the Convex Multiplicative Programming Problem,” Journal of Global Optimization 1 341–357.

    MathSciNet  MATH  Google Scholar 

  • Thoai, Nguyen V. and H. Thy (1980), “Convergent Algorithms for Minimizing a Concave Function,” Mathematics of Operations Research 5, 556–566.

    MathSciNet  Google Scholar 

  • Topkis, Donald M. (1970), “Cutting Plane Methods without Nested Constraint Sets,” Operations Research 18 404–413.

    MathSciNet  MATH  Google Scholar 

  • Tuy, Hoang (1964), “Concave Programming under Linear Constraints,” Soviet Mathematics 5 1437–1440.

    Google Scholar 

  • Tuy, Hoang (1983), “On Outer Approximation Methods for Solving Concave Minimization Problems,” Acta Mathematica Vietnamica 8 3–34.

    MATH  Google Scholar 

  • Tuy, Hoang (1985), “Concave Minimization under Linear Constraints with Special Structure,” Optimization 16 335–352.

    MathSciNet  MATH  Google Scholar 

  • Tuy, Hoang (1986), “A General Deterministic Approach to Global Optimization via d.c. Programming,” in J. B. Hiriart-Urruty (ed.), Fermat Days 1985: Mathematics for Optimization Elsevier Science Publishers, Amsterdam, pp. 137–162.

    Google Scholar 

  • Thy, Hoang (1986a), “Minimizing a Convex Function over a Nonconvex Set,” in W. Domschke, W. Krabs, J. Leim, and P. Spellucci (eds.), Methods of Operations Research 57 Ninth Symposium on Operations Research, Athenaum, Univeristy of Darmstadt, Darmstadt, pp. 61–72.

    Google Scholar 

  • Tuy, Hoang (1987), “Convex Programs with an Additional Reverse Convex Constraint,” Journal of Optimization Theory and Applications 52 463–485.

    MathSciNet  MATH  Google Scholar 

  • Thy, Hoang (1987a), “Normal Conical Algorithm for Concave Minimization over Polytopes,” Preprint 87.20, Institute of Mathematics, Hanoi.

    Google Scholar 

  • Thy, Hoang (1987b), “Vertex-Facet Duality and Polyhedral Annexation Method for Concave Minimization,” Preprint, Institute of Mathematics, Hanoi.

    Google Scholar 

  • Thy, Hoang (1990), “On Polyhedral Annexation Method for Concave Minimization,” in Lev J. Leifman (ed.), Functional Analysis, Optimization, and Mathematical Economics Oxford University Press, New York, pp. 248–260.

    Google Scholar 

  • Tuy, Hoang (1991), “Effect of the Subdivision Strategy on Convergence and Efficiency of some Global Optimization Problems,” Journal of Global Optimization 1 23–36.

    MathSciNet  MATH  Google Scholar 

  • Thy, Hoang (1991a), “Normal Conical Algorithm for Concave Minimization over Polytopes,” Mathematical Programming 51 229–245.

    MathSciNet  Google Scholar 

  • Thy, Hoang (1991b), “A Note on Branch and Bound Algorithms for Separable Programming Problems,” Preprint, Institute of Mathematics, Hanoi.

    Google Scholar 

  • Tuy, Hoang (1991c), “Polyhedral Annexation, Dualization and Dimension Reduction Technique in Global Optimization,” Journal of Global Optimization 1 229–244.

    MathSciNet  MATH  Google Scholar 

  • Thy, Hoang (1992), “The Complementary Convex Structure in Global Optimization,” Journal of Global Optimization 2 21–40.

    Google Scholar 

  • Thy, Hoang (1992a), “On Nonconvex Optimization Problems with Separated Nonconvex Variables,” Journal of Global Optimization 2 133–144.

    Google Scholar 

  • Tuy, Hoang and Al-Khayyal, F. A. (1992), “A Class of Global Optimization Problems Solvable by Sequential Unconstrained Convex Minimization,” in C. A. Floudas and P. M. Pardalos (eds.), Recent Advances in Global Optimization Princeton University Press, Princeton, New Jersey, pp. 141–151.

    Google Scholar 

  • Thy, Hoang, Ghannadan, S., Migdalas, A., and Varbrand, P. (1992), “Minimum Concave Cost Network Flow Problems with a Fixed Number of Nonlinear Arc Costs and Sources,” Research Report, Department of Mathematics, Linkoping Institute of Technology, Linkoping, Sweden.

    Google Scholar 

  • Tuy, Hoang, Ghannadan, S., Migdalas, A., and Varbrand, P. (1992a), “Strongly Polynomial Algorithm for a Production-Transportation Problem with Concave Production Costs,” Research Report, Department of Mathematics, Linkoping Institute of Technology, Linkoping, Sweden.

    Google Scholar 

  • Tuy, Hoang and Horst, R. (1988), “Convergence and Restart in Branch-and Bound Algorithms for Global Optimization. Application to Concave Minimization and d.c. Optimization Problems,” Mathematical Programming 41 161–183.

    MathSciNet  MATH  Google Scholar 

  • Tuy, Hoang, Khachaturov, V., and Utkin, S. (1987), “A Class of Exhaustive Cone Splitting Procedures in Conical Algorithms for Concave Minimization,” Optimization 18 791–808.

    MathSciNet  MATH  Google Scholar 

  • Tuy, Hoang, Migdalas, A., and Varbrand, P. (1993), “A Global Optimization Approach for the Linear Two-Level Program,” Journal of Global Optimization 3 1–23.

    MathSciNet  MATH  Google Scholar 

  • Thy, Hoang and Tam, B. T. (1992), “An Efficient Solution Method for Rank Two Quasiconcave Minimization Problems,” Optimization 24 43–56.

    MathSciNet  Google Scholar 

  • Thy, Hoang and Thai, N. Q. (1983), “Minimizing a Concave Function over a Compact Convex Set,” Acta Mathematica Vietnamica 8 13–20.

    MathSciNet  Google Scholar 

  • Tuy, Hoang, Thieu, T. V., and Thai, N. Q. (1985), “A Conical Algorithm for Globally Minimizing a Concave Function over a Closed Convex Set,” Mathematics of Operations Research 10 498–514.

    MathSciNet  MATH  Google Scholar 

  • Utkin, S., Khachaturov, V., and Tuy, H. (1988), “A New Exhaustive Cone Splitting Procedure for Concave Minimization,” USSR Computational Mathematics and Mathematical Physics 7, 992–999.

    Google Scholar 

  • Vaish, Harish (1974), “Nonconvex Programming with Applications to Production and Location Problems,” Ph.D. Dissertation, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia.

    Google Scholar 

  • Vaish, Harish and Shetty, C. M. (1976), “The Bilinear Programming Problem,” Naval Research Logistics Quarterly 28 303–309.

    MathSciNet  Google Scholar 

  • Vaish, Harish and Shetty, C. M. (1977), “A Cutting Plane Algorithm for the Bilinear Programming Problem,” Naval Research Logistics Quarterly 24 83–94.

    MathSciNet  MATH  Google Scholar 

  • Van Roy, Tony J. and Wolsey, L. A. (1985), “Valid Inequalitites and Separation for Uncapacitated Fixed Charge Networks,” Operations Research Letters 4, 105–112.

    MATH  Google Scholar 

  • Van Tiel, Jan (1984), Convex Analysis - An Introductory Text John Wiley and Sons, Chichester, Great Britain.

    MATH  Google Scholar 

  • Veinott, Arthur F. (1967), “The Supporting Hyperplane Method for Unimodal Programming,” Operations Research 15 147–152.

    MathSciNet  MATH  Google Scholar 

  • Veinott, Arthur F. (1969), “Minimum Concave Cost Solution of Leontiev Substitution Models of Multi-Facility Inventory Systems,” Operations Reserch 17 486–507.

    MathSciNet  Google Scholar 

  • Veinott, Arthur F. (1985), “Existence and Characterization of Minima of Concave Functions on Unbounded Convex Sets,” Mathematical Programming Study 25 88–92.

    MathSciNet  MATH  Google Scholar 

  • Wong, Richard T. (1985), “Location and Network Design,” in M. O’hEigertaigh, J. K. Lenstra, and A. H. G. Rinooy Kan (eds.), Combinatorial Optimization: Annotated Bibliographies John Wiley and Sons, New York, pp. 129–147.

    Google Scholar 

  • Yu, Po-Lung (1985), Multiple-Criteria Decision Making Plenum Press, New York.

    MATH  Google Scholar 

  • Zangwill, Willard I. (1966), “A Deterministic Multi-Product Multi-Facility Production and Inventory Model,” Operations Research 14 486–507.

    MATH  Google Scholar 

  • Zangwill, Willard I. (1968), “Minimum Concave Cost Flows in Certain Networks,” Management Science 14 429–450.

    MathSciNet  MATH  Google Scholar 

  • Zangwill, Willard I. (1969), “A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System-A Network Approach,” Management Science 15 506–527.

    MathSciNet  MATH  Google Scholar 

  • Zeleny, Milan (1982), Multiple Criteria Decision Making McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  • Zwart, Philip B. (1973), “Nonlinear Programming: Counterexamples to Two Global Optimization Algorithms,” Operations Research 21 1260–1266.

    MathSciNet  MATH  Google Scholar 

  • Zwart, Philip B. (1974), “Global Maximization of a Convex Function with Linear Inequality Constraints,” Operations Research 22 602–609.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is indebted to Reiner Horst, Panos M. Pardalos, and Nguyen V. Thoai for their incisive comments and suggestions regarding this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benson, H.P. (1995). Concave Minimization: Theory, Applications and Algorithms. In: Horst, R., Pardalos, P.M. (eds) Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2025-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2025-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5838-1

  • Online ISBN: 978-1-4615-2025-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics