Skip to main content

Unsteady, Wall-Bounded Turbulent Flows

  • Chapter
Transition, Turbulence, and Noise

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 282))

Abstract

Unsteady turbulent flows occur in a variety of engineering applications. Boundary layers on the surface of turbine blades, reciprocating engine cylinder flow, and most biological flows are but a few examples of turbulent flows in which the basic motion (mean flow) is harmonic time-dependent. A systematic investigation of the effect of unsteadiness in turbulent flows was first performed by Karlsson (1959). Experimental investigations were limited by the difficulties associated with analog processing of a velocity signal from such flows. Recently several investigators have examined the response of turbulent flows to imposed disturbances (Binder and Kueny, 1981; Binder et al., 1985; Brereton et al., 1990; Can, 1981; Cousteix, 1986; Cousteix et al., 1981; Mao and Hanratty, 1986; 1982; Ramaprian and Tu, 1983; Ronneberger and Ahrens, 1977; Shemer et al., 1985; and Tu and Ramaprian, 1983; among others.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E.W. and Johnston, J.P., 1988, “Flow Structure in the Near-Wall Zone of a Turbulent Separated Flow,” AIAAJ., vol. 26, no. 8, pp. 932–939.

    Article  ADS  Google Scholar 

  • Ahuja, K.K., Lepicovsky, J., Tam, C.K.W., Morris, P.J., and Burrin, R.H., 1982, “Tone-Excited Jet: Theory and Experiment,” NASA CR-3538.

    Google Scholar 

  • Ayad, S.S. and Mankbadi, R.R., 1991, “A Study of Wake-Generated Unsteadiness in a Channel Flow. Part I - The Mean Flow,” J. Eng. Fluid Mech., vol. 4, pp. 71–90.

    Google Scholar 

  • Balakumar, P. and Widnall, S.E. 1986, “Application of Unsteady Aerodynamics to Large-Eddy Breakup Devices in Turbulent Flow.” Phys. Fluids, vol. 29, pp. 1779–1787.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Batchelor, G.K. and Proudman, I. 1954, “The Effect of Rapid Distortion of a Fluid in Turbulent Motion.” Q.J. Mech. Appl. Math., vol. 7, pp. 83–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Binder, G. and Kueny, J.L., 1981, “Measurements of the Periodic Velocity Oscillations Near the Wall in Unsteady Turbulent Channel Flow.” In Unsteady Turbulent Shear Flows, IUTAM Symp., Michel, R., Cousteix, J., and Houdeville, R., eds., Springer-Verlag, pp. 100–109.

    Chapter  Google Scholar 

  • Binder, G., Tardu, S., Blackwelder, R.F., and Kueny, J.L., 1985, “Large Amplitude Periodic Oscillations in the Wall Region of a Turbulent Channel Flow.” In 5th Symposium on Turbulent Shear Flows, Pennsylvania State University Press, pp. 16.1–16.8.

    Google Scholar 

  • Brown, J.L., Kussoy, M.I., and Coakley, T.J., 1985, “Turbulent Properties of Axisymmetric Shock-Wave/Boundary-Layer Interaction Flows.” Proc. IUTAM Symp. Turbul. Shear-Layer/Shock-Wave Interactions, Palaiseau, pp. 21–23. (Abstr.)

    Google Scholar 

  • Brown, G.L. and Roshko, A., 1974, “On Density Effects and Large-Scale Structure in Turbulent Mixing Layers,” J. Fluid Mech., vol. 64, pt. 4, pp. 775–816.

    Article  ADS  Google Scholar 

  • Carr, L.W., 1981, “A Review of Unsteady Boundary Layer Experiments.” In Unsteady Turbulent Shear Flows, IUTAM Symp., Michel, R., Cousteix, J., and Houdeville, R., eds., Springer-Verlag, pp. 3–35.

    Chapter  Google Scholar 

  • Cousteix, J., 1986, “Three-Dimensional and Unsteady Boundary-Layer Computations.” Ann. Rev. Fluid Mech., vol. 18, pp. 173–196.

    Article  MathSciNet  ADS  Google Scholar 

  • Cousteix, J., Desopper, A., and Houdeville, R., 1977, “Structure and Development of a Turbulent Boundary Layer in an Oscillating External Flow,” Symposium on Turbulent Shear Flows, vol. 1, Springer-Verlag, New York, pp. 154–170.

    Google Scholar 

  • Cousteix, J., Houdeville, R., and Javelle, J., 1981, “Response of a Turbulent Boundary Layer to a Pulsation of the External Flow With and Without Adverse Pressure Gradient,” Unsteady Turbulent Shear Flows, (R. Michael, J. Cousteix, and R. Houdeville, eds.), Springer-Verlag, pp. 120–144.

    Chapter  Google Scholar 

  • Crow, S.C. and Champagne, F.H., 1971, “Orderly Structure in Jet Turbulence,” J. Fluid Mech., vol. 48, pp. 547–591.

    Article  ADS  Google Scholar 

  • Doorly, D.J., Oldfield, M.L.G., and Scrivener, C.T.J., 1985, “Wake-Passing in a Turbine Rotor Cascade, ”Heat Transfer and Cooling in Gas Turbines, AGARD CP-390, AGARD, Neuilly-Sur-Seine, France, pp. 7–1 to 7–18.

    Google Scholar 

  • Dring, R.P., Joslyn, H.D., Hardin, L.W., and Wagner, J.H., 1982, “Turbine Rotor-Stator Interaction,” J. Eng. Power, vol. 104, no. 4, pp. 729–742.

    Article  Google Scholar 

  • Elliott, C.J. and Townsend, A.A., 1981, “The Development of a Turbulent Wake in a Distorting Duct.” J. Fluid Mech. vol. 113, pp. 433–467.

    Article  ADS  Google Scholar 

  • El-Mehlawy, F.M. and Mankbadi, R.R., 1990a, “Transient Heat Transfer in Backward-Facing Step Flows,” AIAA Paper 90–0554.

    Google Scholar 

  • El-Mehlawy, F.M. and Mankbadi, R.R., 1990b, “Heat Transfer in Oscillating Flows,” Nonsteady Fluid Dynamics, J.A. Miller and D.P. Telionis, eds., ASME, pp. 329–337.

    Google Scholar 

  • Favre-Marinet, M., 1975, “Structure des jets pulsants,” Docteur-Ingenieur These, L’Universite Scientifique et Medicate de Grenoble.

    Google Scholar 

  • Finnicum, D.S and Hanratty, T.J.,1987, “Effect of Favorable Pressure Gradients on Turbulent Boundary Layers,” Proc. Sixth Symp. Turbulent Shear Flows, Toulouse, France.

    Google Scholar 

  • Gartshore, I.S., Durbin, P.A., and Hunt, J.C.C., 1983, “The Production of Turbulent Stress in a Shear Flow by Irrotational Fluctuations.” J. Fluid Mech., vol. 137, pp. 307–329.

    Article  ADS  Google Scholar 

  • Gatski, T.B. and Liu, J.T.C., 1980, “Interactions Between Large-Scale Structure and Fine-Grained Turbulence in a Free Shear Flow. Part III - A Numerical Solution,” Philos. Trans. Roy. Soc. London Ser A., vol. 293, pp. 473–509.

    Article  ADS  Google Scholar 

  • Goldstein, M.E., 1979, “Turbulence Generated by the Interaction of Entropy Fluctuations With Nonuniform Mean Flow.” J. Fluid Mech. vol. 93, pp. 209–224.

    Article  ADS  MATH  Google Scholar 

  • Goldstein, M.E., and Atassi, H., 1976, “A Complete Second-Order Theory for the Unsteady Flow About an Airfoil Due to a Periodic Gust.” J. Fluid Mech. vol. 74, pp. 741–765.

    Article  ADS  MATH  Google Scholar 

  • Hanjalic, K. and Stosic, N., 1983, “Hysteresis of Turbulent Stresses in Wall Flows Subjected to Periodic Disturbances.” In Turbulent Shear Flows, 4 (eds. L.J.S. Bradbury et al.), pp. 287–300, Springer.

    Google Scholar 

  • Henderson, R.E., 1978, “The Unsteady Design of Axial-Flow Turbomachines,” Symposium on Design and Operation of Fluid Machinery, Colorado State University, Fort Collins, CO, vol. 2, pp. 91–108.

    Google Scholar 

  • Ho, C.M. and Huang, L.S., 1982, “Subharmonics and Vortex Merging in Mixing Layers,” J. Fluid Mech., vol. 119, pp. 443–473.

    Article  ADS  Google Scholar 

  • Hodson, H.P., 1984, “Boundary Layer and Loss Measurements on the Rotor of an Axial-Flow Turbine,” J. Eng. Gas Turbines Power, vol. 106, no. 2, pp. 391–399.

    Article  Google Scholar 

  • Hunt, J.C.R., 1978, “A Review of the Theory of Rapidly Distorted Turbulent Flows and Its Applications.” In Fluid Dynam. Trans., vol. 9, pp. 121–152.

    Google Scholar 

  • Hunt, J.C.R. and Carruthers, D.J.,1990, “Rapid Distortion Theory and the ‘Problems’ of Turbulence.” J. Fluid Mech. vol. 212, pp. 497–532.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hunt, J.C.R. and Maxey, M.R., 1978, “Estimating Velocities and Shear Stresses in Turbulent Flows of Liquid Metals Driven by Low Frequency Electromagnetic Fields.” In MHD-Flows and Turbulence II, H. Branover, ed., Israel University Press, pp. 249–269.

    Google Scholar 

  • Hussain, A.K.M.F. and Reynolds, W.C., 1970, “The Mechanics of an Organized Wave in Turbulent Shear Flow,” J. Fluid Mech., vol. 41, pt. 2, pp. 241–258.

    Article  ADS  Google Scholar 

  • Hussain, A.K.M.F. and Reynolds, W.C., 1975, “Measurements in Fully Developed Turbulent Channel Flow,” J. Fluids Eng., vol. 97, no. 4, pp. 568–580.

    Article  Google Scholar 

  • Hussain, A.K.M.F. and Zaman, K.B.M.Q., 1980, “Vortex Pairing in a Circular Jet Under Controlled Excitation. Part 2: Coherent Structure Dynamics,” J. Fluid Mech., vol. 101, pt. 3, pp. 493–544.

    Article  ADS  Google Scholar 

  • Jones, W.P. and Launder, B.E., 1972, “The Prediction of Laminarization With a Two-Equation Model of Turbulence,” Int. J. Hear Mass Trans., vol. 15, no. 2, pp. 301–314.

    Article  Google Scholar 

  • Karlsson, S.K.F., 1959, “An Unsteady Turbulent Boundary Layer.” J. Fluid Mech. vol. 5, pp. 622–636.

    Article  ADS  MATH  Google Scholar 

  • Kebede, W., Launder, B.E., and Younis, B.A., 1985, “Large-Amplitude Periodic Pipe Flow: A Second-Moment Closure Study,” Fifth Symposium on Turbulent Shear Flows, Pennsylvania State University, pp. 16.23–16.29.

    Google Scholar 

  • Kerrebrock, J.L. and Mikolajczak, A.A., 1970, “Influence of Unsteadiness of the Flow on the Efficiency of Turbine Stages,” Teploenergetika, vol. 17, no. 10, pp. 21–23.

    Google Scholar 

  • Kim, J., Kline, S.J., and Johnston, J.P., 1980, “Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step,” J. Fluids Eng., vol. 102, no. 3, pp. 302–308.

    Article  Google Scholar 

  • Launder, B.E. and Spalding, D.B., 1974, “The Numerical Computation of Turbulent Flow,” Comput. Mech. Appl. Mech. Eng., vol. 3, pp. 269–289.

    Article  MATH  Google Scholar 

  • Mankbadi, R.R., 1985a, “On the Interaction Between Fundamental and Subharmonic Instability Waves in a Turbulent Round Jet,” J. Fluid Mech., vol. 160, pp. 385–419.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mankbadi, R.R., 1985b, “The Mechanism of Mixing Enhancement and Suppression in a Circular Jet Under Excitation Conditions,” Phys. Fluids, vol. 28, no. 7, pp. 2062–2074.

    Article  ADS  Google Scholar 

  • Mankbadi, R.R., 1986, “The Effect of Phase-Difference on the Spreading Rate of a Jet,” AIAAJ, vol. 24, no. 12, pp. 1941–1948.

    Article  ADS  MATH  Google Scholar 

  • Mankbadi, R.R., 1988, “Fully Developed Pulsating Turbulent Flows,” AIAA paper 88–3673.

    Google Scholar 

  • Mankbadi, R.R., 1989, “A Study of Unsteady Rotor-Stator Interactions,” J. Turbomachinery, vol. 111, no. 4, pp. 394–400.

    Article  Google Scholar 

  • Mankbadi, R.R., 1991, “Multifrequency Excited Jets,” Phys. Fluids A, vol. 3, no. 4, pp. 595–605.

    Article  ADS  MATH  Google Scholar 

  • Mankbadi, R.R. and Ayad, S.S., 1191, “A Study of Wake-Generated Unsteadiness in a Channel Flows. Part II. Turbulence and the Wall Shear Stress,” J. Eng. Fluid Mech., vol. 4, pp. 91–110.

    Google Scholar 

  • Mankbadi, R.R. and Liu, J.T.C., 1981, “A Study of the Interactions Between Large-Scale Coherent Structures and Fine-Grained Turbulence in a Round Jet,” Philos. Trans. Roy. Soc. London Ser. A., vol. 298, pp. 541–602.

    Article  ADS  MATH  Google Scholar 

  • Mankbadi, R.R. and Liu, J.T.C., 1992, “Near-Wall Response in Turbulent Shear Flows Subjected to Imposed Unsteadiness,” J. Fluid Mech., vol. 238, pp. 55–71.

    Article  ADS  MATH  Google Scholar 

  • Mankbadi, R.R. and Mobark, A., 1989, “Quasi-Steady Modelling of Developing Periodic Turbulent Flows,” AIAA Paper 89–2555.

    Google Scholar 

  • Mankbadi, R.R. and Mobark, A., 1991, “Quasi-Steady Turbulence Modelling of Unsteady Flows,” Int. J. Heat Fluid Flow, vol. 12, no. 2, pp. 122–129.

    Article  ADS  Google Scholar 

  • Mao, Z.X. and Hanratty, T.J., 1986, “Studies of the Wall Shear Stress in a Turbulent Pulsating Pipe Flow,”, J. Fluid Mech., vol. 170, pp. 545–564.

    Article  ADS  Google Scholar 

  • Mathieu, J., 1971, V.K.I. Lect. Ser., Vol. 36.

    Google Scholar 

  • Maxey, M.R., 1982, “Distortion of Turbulence in Flows With Parallel Streamlines.” J. Fluid Mech. vol. 124, pp. 261–282.

    Article  ADS  MATH  Google Scholar 

  • Mizushina, T., Maruyama, T., and Hirasawa, H., 1975, “Structure of the Turbulence in Pulsating Pipe Flows,” J. Chem. Eng., Japan, vol. 8, no. 3, pp. 210–216.

    Article  Google Scholar 

  • Mizushina, T., Maruyama, T., and Shiozaki, Y., 1973, “Pulsating Turbulent Flow in a Tube,” J. Chem. Eng. Japan, vol. 6, pp. 287–294.

    Article  Google Scholar 

  • Moore, C.J., 1977, “The Role of Shear-Layer Instability Waves in Jet Exhaust Noise,” J. Fluid Mech., vol. 80, pt. 2, pp. 321–367.

    Article  ADS  Google Scholar 

  • Patel, V.C., Rodi, W., and Scheuerer, G., 1985, “Turbulence Models for Near-Wall and Low-Reynolds-Number Flows - A Review,” AIAAJ, vol. 23, pp. 1308–1319.

    Article  MathSciNet  ADS  Google Scholar 

  • Rai, M.M., 1987, “Navier-Stokes Simulations of Rotor-Stator Interactions Using Patched and Overlaid Grids,” J. Propulsion Power, vol. 3, no. 5, pp. 387–396.

    Article  MathSciNet  Google Scholar 

  • Ramaprian, B.R., Tu, S.W. and Menendez, A.N., 1983, “Periodic Turbulent Shear Flows.” In Turbulent Shear Flows, 4 (eds., L.J.S. Bradbury et. al.), pp. 301–310. Springer.

    Google Scholar 

  • Ramaprian, B.R. and Tu, S.W., 1983, “Fully Developed Periodic Turbulent Pipe Flow: Part 2. The Detailed Structure of the Flow,” J. Fluid Mech., vol. 137, pp. 59–81.

    Article  ADS  Google Scholar 

  • Rodi, W. and Scheuerer, G., 1986, “Scrutinizing the k-e Model Under Adverse Pressure Gradient Conditions.” J. Fluids Eng., vol. 108, pp. 174–179.

    Article  Google Scholar 

  • Ronneberger, D. and Ahrens, C.D., 1977, “Wall Shear Stress Caused by Small Amplitude Perturbations of Turbulent Boundary-Layer Flow: An Experimental Investigation.” J. Fluid Mech., vol. 83, pp. 433–464.

    Article  ADS  Google Scholar 

  • Ronneberger, D., and Binder G., 1991, “Response of Wall Turbulence to Imposed Unsteadiness.” EUROMECH 272, Response of Shear Flows to Imposed Unsteadiness, Aussuis, France, January 14–17, 1991.

    Google Scholar 

  • Roshko, A., 1976, “Structure of Turbulent Shear Flows: A New Look,” AIAAJ, vol. 14, no. 10, pp. 1349–1357.

    Article  ADS  Google Scholar 

  • Savill, A.M., 1987, “Recent Developments in Rapid-Distortion Theory.” Ann. Rev. Fluid Mech. vol. 19, pp. 531–570.

    Article  ADS  Google Scholar 

  • Schoenung, B., Mankbadi, R.R., and Rodi, W., 1989, “Computational Study of the Unsteady Flow Due to Wakes Passing Through a Channel,” in Turbulent Shear Flows, 6, pp. 255–268.

    Chapter  Google Scholar 

  • Seki, N., Fukusako, S., and Hirate, T., 1976a, “Effect of Stall Length on Heat Transfer in Reattached Region Behind a Double Step at Entrance to an Enlarged Flat Duct,” Int. J. Hear Mass Trans., vol. 19, no. 6, pp. 700–702.

    Article  ADS  Google Scholar 

  • Seki, N., Fukusako, S., and Hirate, T., 1976b, “Turbulent Fluctuations and Heat Transfer for Separated Flow Associated With a Double Step at the Entrance to an Enlarged Flat Duct,” J. Heat Transfer, vol. 98, no. 4, pp. 588–593.

    Article  Google Scholar 

  • Shemer, L., Wygnanski, I., and Kit, E., 1985, “Pulsating Flow in a Pipe,” J. Fluid Mech., vol. 153, pp. 313–337.

    Article  ADS  Google Scholar 

  • Silveira A, Grand, M., Metais, O., and Lesieur, M., 1991, “Large-Eddy Simulations of the Turbulent Flow in the Downstream Region of a Backward-Facing Step,” Phys. Rev. Letters„, vol. 66, number 18, pp. 2320–2323.

    Article  ADS  Google Scholar 

  • Silveira, A., Grand, M., Metais, O., and Lesieur, M., 1993, “A Numerical Investigation of the Coherent Structures of Turbulence Behind a Backward-Facing Step,” J. Fluid Mech., vol. 256, pp. 1–25.

    Article  ADS  MATH  Google Scholar 

  • Spalding, D.B., 1967, “Heat Transfer From Turbulent Separated Flows,” J. Fluid Mech., vol. 27, pt. 1, pp. 97–110.

    Article  ADS  Google Scholar 

  • Stretch, D. and Britter, R., 1985, “Thoughts, Calculations and Experiments on The Decay of Stratified Grid Turbulence.” Proc. IUTAM Symp. Mixing Stratified Fluids, Univ. W. Aust.

    Google Scholar 

  • Tardu, S.F., Binder G., and Blackwelder, R.F., 1991, “Turbulent Channel Flow With Large Amplitude Velocity Oscillations.” Submitted to J. Fluid Mech.

    Google Scholar 

  • Townsend, A.A., 1970, “Entrainment and The Structure of Turbulent Flow.” J. Fluid Mech. vol. 41, pp. 13–46.

    Article  ADS  MATH  Google Scholar 

  • Townsend, A.A., 1976, The Structure of Turbulent Shear Flow (2nd ed.), Cambridge Univ. Press, pp. 80–88 and 105–129.

    MATH  Google Scholar 

  • Townsend, A.A., 1980, “The Response of Sheared Turbulence to Additional Distortion.” J. Fluid Mech., vol. 98, pp. 171–191.

    Article  ADS  MATH  Google Scholar 

  • Tu, S.W. and Ramaprian, B.R., 1983, “Fully Developed Periodic Turbulent Pipe Flow: Part 1. Main Experimental Results and Comparison With Predictions,” J. Fluid Mech., vol. 137, pp. 31–58.

    Article  ADS  Google Scholar 

  • Walker, G.J., 1974, “The Unsteady Nature of Boundary Layer Transition on an Axial-Flow Compressor Blade,” ASME Paper 74-GT-135, Mar.

    Google Scholar 

  • Winant, C.D. and Browand, F.K., 1974, “Vortex Pairing: The Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Number,” J. Fluid Mech., vol. 63, pt. 2, pp. 237–256.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mankbadi, R.R. (1994). Unsteady, Wall-Bounded Turbulent Flows. In: Transition, Turbulence, and Noise. The Springer International Series in Engineering and Computer Science, vol 282. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2744-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2744-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9481-5

  • Online ISBN: 978-1-4615-2744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics