Skip to main content

Genetic Basis for Dimorphism and Pathogenicity in Candida Albicans

  • Chapter
Dimorphic Fungi in Biology and Medicine

Abstract

Our research is aimed at understanding how genetic information is differentially used in the yeast-hyphal morphogenesis of C. albicans, and the biochemical role such gene products play in the process. Toward this end, we have focused on genetic elements that are activated by pH and by temperature, two conditions that regulate the decision to produce yeast or hyphae. One gene, called PHR1, is actively transcribed only at pH’s near neutrality. The inferred amino acid sequence of this gene is 56% identical to a protein of S. cerevisiae that is anchored to the membrane by GPI (glycosylphosphatidylinositol). When PHR1 is deleted on both chromosomes, the double mutant is unable to form hyphal cells. A temperature regulated genetic element was found to have the characteristics of a retrotransposon and to be moderately repeated in the genome, with copies on several chromosomes. The distribution of this element was also found to be strain specific. We have speculated on a role such an element could play in the pathogenesis of C. albicans.

Part of paper is adapted from J.Y. Chen and W.A. Fonzi, J. Bacteriol. 174 (1992) 5624-5632 with kind permission from the American Society for Microbiology, Journals Division, the copyright holder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.M. Gillum, E.Y.H. Tsay and D.R. Kirsch, Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, Mol. Gen. Genet. 198: 179 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. R. Kelly, S.M. Miller, M.B. Kurtz and D.R.Kirsch, Directed mutagenesis in Candida albicans: one-step gene disruption to isolate ura3 mutants, Mol. Cell. Biol. 7: 199 (1987).

    PubMed  CAS  Google Scholar 

  3. F.C. Odds, “Candida and Candidosis”, Ballière Tindall, London (1988).

    Google Scholar 

  4. W.L. Whelan, R.M. Parridge and P.T. Magee, Heterozygosity and segregation in Candida albicans, Mol. Gen. Genet. 180: 107 (1980).

    Article  PubMed  CAS  Google Scholar 

  5. G.W. Bedell and D.R. Soll, Effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and -sensitive pathways for mycelium formation, Infect. Immun. 26: 348 (1979).

    PubMed  CAS  Google Scholar 

  6. K.L. Lee, H.R. Buckley and C.C. Campbell, An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans, Sabouraudia 13: 148 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. Sambrook, E.F. Fritsch and T. Maniatis, “Molecular Cloning: A laboratory Manual”, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).

    Google Scholar 

  8. L.R. Carlock, Analyzing lambda libraries, Focus 8: 6 (1986).

    Google Scholar 

  9. F. Sanger and A.R. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, J. Mol. Biol. 94: 441 (1975).

    Article  PubMed  CAS  Google Scholar 

  10. J. Devereux, P. Haeberli and O. Smithies, A comprehensive set of sequence analysis programs for the VAX, Nucl. Acids Res. 12: 387 (1984).

    Article  PubMed  CAS  Google Scholar 

  11. W.R. Pearson and D.J. Lipman, Improved tools for biological sequence comparison, Proc. Natl.Acad. Sci. USA 85: 2444 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. S. Scherer and D.S. Stevens, A Candida albicans dispersed, repeated gene family and its epidemiological applications, Proc. Natl, Acad. Sci. USA 85: 1452 (1988).

    Article  CAS  Google Scholar 

  13. C.J. Langford and D. Gallwitz, Evidence for an intron-containing sequence required for the splicing of yeast RNA polymerase II transcripts, Cell 33: 519 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. B.B. Magee, Y. Koltin, J.A. Gorman and P.T. Magee, Assignment of cloned genes to the seven electrophoretically separated Candida albicans chromosomes, Mol. Cell. Biol. 8: 4721 (1988).

    PubMed  CAS  Google Scholar 

  15. J.D. Boeke, F. LaCroute and G.R. Fink, A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoroorotic acid resistance. Mol Gen. Genet. 197: 345 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. F. Winston, F. Chumley and G.R. Fink, Eviction and transplacement of mutant genes in yeast,Methods Enzymol. 101: 211 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. Bingham, K.S. Hall and J.L. Slonczewski, Alkaline induction of a novel gene locus, alx, in Escherichia coli, J. Bacteriol. 172: 2184 (1990).

    PubMed  CAS  Google Scholar 

  18. M. Heyde and R. Portalier, Regulation of major outer membrane porin proteins of Escherichia coli K-12 by pH, Mol. Gen. Genet. 208: 511 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. V.L. Headley and S.M. Payne, Differential protein expression by Shigella flexneri in intracellular and extracellular environments, Proc. Natl. Acad. Sci. USA 87: 4179 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. Z. Aliabadi, Y.K. Park, J.L. Slonczewski and J.W. Foster, Novel regulatory loci: oxygen- and pH- regulated gene expression in Salmonella typhimurium, J. Bacteriol. 170: 842 (1988).

    CAS  Google Scholar 

  21. C. Parsot and J.J. Mekalanos, Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under the control of ToxR, the cholera toxin transcriptional activator, J. Bacteriol 173: 2842 (1991).

    PubMed  CAS  Google Scholar 

  22. R.D. King, J.C. Lee and A.L. Morris, Adherence of Candida albicans and other Candida species to mucosal epithelial cells, Infect. Immun. 28: 667 (1980).

    Google Scholar 

  23. J.D. Sobel, P.G. Myers, D. Kaye and M.E. Levison, Adherence of Candida albicans to human vaginal and buccal epithelial cells, J. Infect. Dis. 143: 76 (1982).

    Article  Google Scholar 

  24. M. Vai, E. Gatti, E. Lacana, L. Popolo and L. Alberghina, Isolation and deduced amino acid sequence of the gene encoding gp115, a yeast glycophospholipid-anchored protein containing a serine rich region, J. Biol. Chem. 266: 12242 (1991).

    PubMed  CAS  Google Scholar 

  25. C. Nuoffer, P. Jeno, A. Conzelmann and H. Reizman, Determinants for glycophospholipid anchoring of the Saccharomyces cerevisiae GAS1protein to the plasma membrane, Mol Cell Biol. 11: 27 (1991).

    PubMed  CAS  Google Scholar 

  26. A.H. Futerman, M.G. Low, K.E. Ackermann, W.R. Sherman and I. Silman, Identification of covalenty bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetyl-cholinesterase, Biochem. Biophys. Res. Commun. 129: 312 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. M.A.J. Ferguson, K. Hadler and G.A.M. Cross, Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH-terminus, J. Biol. Chem. 260: 4963 (1985).

    PubMed  CAS  Google Scholar 

  28. A. Roy, C.F. Lu, D.L. Marykwas, P.N. Lipke and J. Kurjan, The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin, Mol. Cell. Biol, 11: 4196 (1991).

    PubMed  CAS  Google Scholar 

  29. E. Alani, L. Cao and N. Klecker, A method for gene disruption that allows repeated use of the URA3 selection in the construction of multiple disruption yeast strains, Genetics 116: 541 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. J.W. Landau, N. Dabrowa and V.D. Newcomer, The rapid formation in serum of filaments by Candida albicans, J. Investig. Dermatol 44: 171 (1965).

    PubMed  CAS  Google Scholar 

  31. J. Boeke, Transposable elements in Saccharomyces cerevisiae, in: “Mobile DNA”, D.E. Berg and M.M. Howe, eds., American Society for Microbiology, Washington, D.C. (1989).

    Google Scholar 

  32. H. Varmus and P. Brown, Retroviruses, in: “Mobile DNA”, D.E. Berg and M.M. Howe, eds., American Society for Microbiology, Washington, D.C. (1989).

    Google Scholar 

  33. G. Keith and G. Dirheimer, Reinvestigation of the primary structure of brewer’s yeast Arg-tRNA-3, Biochem. Biophys. Res. Commun. 92: 116 (1980).

    Article  PubMed  CAS  Google Scholar 

  34. P. Sundstrom, D. Smith and P.S. Sypherd, Sequence analysis and expression of the two genes for elongation factor-la from the dimorphic yeast Candida albicans, J. Bacteriol. 172: 2036 (1990).

    PubMed  CAS  Google Scholar 

  35. K.K. Myers, W.A. Fonzi and P.S. Sypherd, Isolation and sequence analysis of the gene for translation elongation factor 3 from Candida albicans, Nucleic Acids Res. 20: 1705 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. Y. Kikuchi, Y. Ando and T. Shiba, Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila, Nature 323: 824 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. G.S. Roeder and G.R. Fink, DNA rearrangements associated with a transposable element in yeast, Cell 21: 239 (1980).

    Article  PubMed  CAS  Google Scholar 

  38. A.T. Maurelli, Temperature regulation of virulence genes in pathogenic bacteria: a general strategy for human pathogens?, Microb. Path. 7: 1 (1989).

    Article  CAS  Google Scholar 

  39. P.P. Antley and K.C. Hazen, Role of yeast cell growth temperature on Candida albicans virulence in mice, Infect. Immun. 56: 2884 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fonzi, W.A., Saporito-Irwin, S., Chen, JY., Sypherd, P. (1993). Genetic Basis for Dimorphism and Pathogenicity in Candida Albicans . In: Vanden Bossche, H., Odds, F.C., Kerridge, D. (eds) Dimorphic Fungi in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2834-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2834-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6226-5

  • Online ISBN: 978-1-4615-2834-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics