Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 248))

Abstract

The description of the genetic diversity of species is a prerequisite step for both basic (understanding of mechanisms involved in the adaptation and evolution of species) and applied (management of the genetic resources of species) purposes. This description includes two major phases. One is a proper identification of the species under consideration. From a theoretical point of view, the species is clearly defined as a community of individuals which can interbreed in the wild and produce fertile progenies. However, this biological concept of species is difficult or impossible to apply and, in practice, many species are still recognized on a morphological basis. In the case of the fishes which exhibit a large phenotypic plasticity (Aliendorf et al., 1987), this typological approach does not lead to adequate identification of species in many situations. The second phase is the description of the intraspecific structure of the genetic variation and the identification of elementary breeding units. These units are defined as communities of individuals of opposite sex which have, a priori, the same probability to interbreed and to produce a fertile progeny. This mating system is called panmixy and each panmictic breeding unit a population. It must be emphasized that the population is the major evolutionary unit of the species and, therefore, should be the major management unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allendorf, F.W., and S.R. Phelps. 1981. Use of allelic frequencies to describe population structure. Canadian Journal of Fisheries and Aquatic Sciences. 38: 1507–1514.

    Article  Google Scholar 

  • Allendorf, F.W., N. Ryman, and F.M Utter. 1987. Genetics and fishery management. Past, present and future. In: “Population genetics and fishery management,” N. Ryman and F. Utter, eds., pp. 1–19, University of Washington, Seattle and London.

    Google Scholar 

  • Avise, J.C., C. Giblin-Davidson, J. Laerm, J.C. Patton, and R.A. Lansman. 1979. Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomispinetis. Proceedings of the National Academy of Sciences U.S.A. 76: 6694–6698.

    Article  CAS  Google Scholar 

  • Birky, C.W., P. Fuerst, and T. Maruyama. 1989. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121: 613–627.

    PubMed  Google Scholar 

  • Blanc, J.M., B. Chevassus, and P. Bergot. 1979. Détermimisme génétique du nombre de coeca piloriques chez la truite commune (Salmo trutta L.) et la truite arc-en-ciel (Salmo gairdneri R.). III: effet du génotype et de la taille des oeufs sur la réalisation du caractère chez la truite fario. Annales de génétique et de sélection animales 11: 79–92.

    Article  Google Scholar 

  • Blanc, J.M., H. Poisson, and R. Vibert. 1982. Variabilité génétique de la ponctuation noire sur la truitelle fario (Salmo trutta). Annales de génétique et de sélection animales 14: 225–236.

    Article  CAS  Google Scholar 

  • Camin, J.H. and R.R. Sokal. 1965. A method from deducing branching sequences in phylogeny. Evolution 19: 311–326.

    Article  Google Scholar 

  • Chakraborty, R.. 1984. Detection of nonrandom association of alleles from the distribution of the number of heterozygous loci in a sample. Genetics 108: 719–731.

    PubMed  CAS  Google Scholar 

  • Falconer, D.S. 1989. “Introduction to quantitative genetics,” Longman Scientific and Technical, Harlon, England.

    Google Scholar 

  • Farris, S.D. 1977. Phylogenetic analysis under Dollo’s law. Systematic Zoology 26: 77–88.

    Article  Google Scholar 

  • Farris, S.D. 1978. Inferring phylogenic trees from chromosome inversion data. Systematic Zoology 27: 275–284.

    Article  Google Scholar 

  • Farris, S.D. and W.J. Berg. 1987. The utility of mitochondrial DNA in fish genetics and fishery management in: “Population genetics and fishery management,” N. Ryman and F. Utter, eds., pp. 277–299, University of Washington, Seattle and London.

    Google Scholar 

  • Felsenstein, J. 1988. Phylogenies from molecular sequences: Inference and reliability. Annual Review of Genetics 22: 521–565.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W.M. and M. Margoliash. 1967. Construction of phylogenetic trees. Science 155: 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Guyomard, R. 1989. Diversité génétique de la truite commune. Bulletin français dépêche et de pisciculture 314: 118–135.

    Article  Google Scholar 

  • Gyllensten, U. and A.C. Wilson. 1987. Mitochondrial DNA of salmonids: inter and intraspecific variability detected with restriction enzymes in: “Population genetics and fishery management,” N. Ryman and F. Utter, eds., pp. 301–317, University of Washington, Seattle and London.

    Google Scholar 

  • Hartley, S.E. and M.T. Horne. 1984. Chromosome polymorphism and constitutive heterochromatin in Atlantic salmon, Salmo salar. Chromosoma 89: 377–380.

    Article  Google Scholar 

  • Hennig, W. 1966. “Phylogenetic systematics,” University of Illinois Press, Urbana.

    Google Scholar 

  • Jeffreys, A.J., V. Wilson, and S.L. Thein. 1985. Hypervariable “minisatellite” regions in human DNA. Nature 314: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Kluge, A.G. and J.S. Farris. 1969. Quantitative phyletics and the evolution of anurians. Systematic Zoology 18: 1–32.

    Article  Google Scholar 

  • Krieg, F. 1984. Recherche d’une différenciation génétique entre populations de Salmo trutta. Ph.D. thesis, universite de Paris-Sud, Orsay.

    Google Scholar 

  • Leary, R.F., F.W. Allendorf, and K.L. Knudsen. 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 1318–1326.

    Article  Google Scholar 

  • Lebart, L., A. Morineau, and K.M. Worwick. 1984. “Multivariate descriptive analysis,” John Wiley and Sons, New York.

    Google Scholar 

  • Marshall, D.R. and A.H.D. Brown. 1975. The chargestate model of protein polymorphism in natural populations. Journal of Molecular Evolution 6: 149–163.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M. 1975. “Population genetics and molecular evolution.” NorthHolland, Amsterdam and New York.

    Google Scholar 

  • Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    PubMed  CAS  Google Scholar 

  • Pasteur, N., G. Pasteur, F. Bonhomme, J. Catalan, and J. BrittonDavidian. 1987. Manuel technique pour Vélectrophorese de protéines. Technique et documentation, Lavoisier, Paris.

    Google Scholar 

  • Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. Freeman, San Francisco.

    Google Scholar 

  • Solignac, M., M. Monnerot, and J.C. Mounolou. 1986. Mitochondrial evolution in the melanogaster species subgroup of Drosophila. Journal of Molecular Evolution 23: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Taggart, J.B. and A. Ferguson. 1990. Hypervariable minisatellite DNA single probes for Atlantic salmon, Salmo salar L. Journal of Fish Biology 37: 991–993.

    Article  CAS  Google Scholar 

  • Tautz, D. 1989. Hypervariability of simple sequences as a source for polymorphic DNA markers. Nucleic Acids Research 19: 3756–3763.

    Google Scholar 

  • Thorgaard, G.H. 1983. Chromosomal differences among rainbow trout populations. Copeia: 650–662.

    Google Scholar 

  • Vassart, G., M. Georges, R. Monsieur, H. Brocas, A.S. Lequarre, and D. Cristophe. 1987. A sequence of the M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684.

    Article  PubMed  CAS  Google Scholar 

  • Weir, B.S. 1990. “Genetic data analysis”, Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts.

    Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 22–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guyomard, R. (1993). Methods to Describe Fish Stocks. In: Cloud, J.G., Thorgaard, G.H. (eds) Genetic Conservation of Salmonid Fishes. NATO ASI Series, vol 248. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2866-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2866-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6242-5

  • Online ISBN: 978-1-4615-2866-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics