Skip to main content

Somatosensory Input to the Periaqueductal Gray: A Spinal Relay to a Descending Control Center

  • Chapter
The Midbrain Periaqueductal Gray Matter

Part of the book series: NATO ASI Series ((NSSA,volume 213))

Abstract

The spinomesencephalic tract (SMT) with its varied origins (Mantyh, 1982; Menétrey et al., 1982; Swett et al., 1985; Wiberg and Blomqvist, 1984; Wiberg et al., 1987; Yezierski and Mendez, 1991; Zhang et al., 1990), spinal trajectories (Hylden et al., 1986b; Kerr, 1975; McMahon and Wall, 1985; Yezierski and Schwartz, 1986; Zemlan et al., 1978), and sites of termination (Anderson and Berry, 1959; McMahon and Wall 1985; Mehler, 1969; Morin, 1953; Björkeland and Boivie, 1984; Blomqvist and Craig, this volume; Yezierski, 1988) is often described as having a role in nociception (Bowsher, 1976; Mehler, 1969; Willis, 1985; Willis and Coggeshall, 1978; Yezierski, 1988). Consistent with this hypothesis are the responses of SMT cells to noxious mechanical and thermal stimuli (Hylden et al., 1986a; 1989; Menétrey et al., 1980; Yezierski and Schwartz, 1986; Yezierski et al., 1985). Furthermore, recent studies have shown SMT cells in the upper cervical and lumbosacral spinal cord respond to inputs from cutaneous and /or deep structures, including joints, muscles, and viscera (Yezierski and Broton, 1991; Yezierski and Schwartz, 1986; Yezierski et al., 1987; Yezierski, 1990). These observations as well as the varied functions associated with SMT projection targets supports a role of the SMT in sensory, motor and visceral functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abols, I.A. and Basbaum, A.I., Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain, J. Comp. Neurol., 201 (1981) 285–297.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, E., Periaqueductal gray and cerebral cortex modulate responses of medial thalamic neurons to noxious stimulation, Brain Res., 375 (1986) 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, F.D. and Berry, C.M., Degeneration studies of long ascending fiber systems in the cat brain stem, J. Comp. Neurol., 111 (1959) 195–229.

    Article  CAS  PubMed  Google Scholar 

  • Bandler, R., Carrive, P., Zhang, S.P., Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization, Prog. Brain Res., 87 (1991) 269–305.

    Article  CAS  PubMed  Google Scholar 

  • Barbaresi, P., Conti, F. and Manzoni, T., Periaqueductal gray projection to the ventrobasal complex in the cat: an HRP study, Neurosci. Lett., 30 (1982) 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Barone, F.C., Wagner, M.J. and Tsai, W.H., Effects of periaqueductal gray stimulation on diencephalic neural activity, Brain Res. Bull., 7 (1981) 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Berman, A.L., The Brain Stem of the Cat, a Stereotaxic Atlas with Stereotaxic Coordinates, Univ. of Wisconsin Press, Madison, 1968.

    Google Scholar 

  • Björkeland, M. and Boivie, J., The termination of spinomesencephalic fibers in the cat, an experimental anatomical study, Anat. Embryol. (Berl.), 170 (1984) 265–277.

    Article  Google Scholar 

  • Bowsher, D., Termination of the central pain pathway in man: the conscious appreciation of pain., Brain, 80 (1957) 606–622.

    Article  CAS  PubMed  Google Scholar 

  • Bowsher, D., Role of the reticular formation in responses to noxious stimulation, Pain, 2 (1976) 361–378.

    Article  CAS  PubMed  Google Scholar 

  • Chung, J.M., Kevetter, G.A., Yezierski, R.P., Haber, L.H., Martin, R.F. and Willis W.D., Midbrain nuclei projecting to the medial medulla oblongata in the monkey, J. Comp. Neurol., 214 (1983) 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Duggan, A.W. and Griersmith, B.T., Inhibition of the spinal transmission of nociceptive information by supraspinal stimulation in the cat, Pain, 6 (1979) 149–161.

    Article  CAS  PubMed  Google Scholar 

  • Emmers, R., Dual alterations of thalamic nociceptive activity by stimulation of the periaqueductal gray matter, Exp. Neurol., 65 (1979) 186–201.

    Article  CAS  PubMed  Google Scholar 

  • Gallager, D.W. and Pert, A., Afferents to brain stem nuclei in the rat as demonstrated by microiontophoretically applied horseradish peroxidase, Brain Res., 144 (1978) 257–275.

    Article  CAS  PubMed  Google Scholar 

  • Gebhart, G.F., Modulatory effects of descending systems on spinal dorsal horn neurons, In: Spinal Afferent Processing, Yaksh T. (Ed.), Plenum, New York, 1986, pp. 391–416.

    Google Scholar 

  • Gerhart, K.D., Yezierski, R.P., Wilcox, T.K. and Willis, W.D., Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation, J. Neurophysiol., 51 (1984) 450–466.

    CAS  PubMed  Google Scholar 

  • Gray, B.G. and Dostrovsky, J.O., Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons, J. Neurophysiol., 49 (1983) 932–947.

    CAS  PubMed  Google Scholar 

  • Hamilton, B.L., Projections of the nuclei of the periaqueductal gray matter in the cat., J. Comp. Neurol., 152 (1974) 45–58.

    Article  Google Scholar 

  • Hammond, D.L., Control systems for nociceptive afferent processing: The descending inhibitory pathways, In: Spinal Afferent Processing, Yaksh T. (Ed.), Plenum, New York, 1986, pp. 363–390.

    Google Scholar 

  • Handwerker, H.O., Reeh, P.W. and Steen, K.H. Effects of 5HT on nociceptors, In: Serotonin and Pain, Besson J.-M. (Ed.), Elsevier, Amsterdam, 1990, pp. 1–15.

    Google Scholar 

  • Hardy, J.D., Wolff, H.G, and Goodell, H., Pain Sensations and Reactions, Williams and Wilkins, Baltimore, 1952.

    Google Scholar 

  • Hylden, J., Hayashi, H. and Bennett, G., Physiology and morphology of the lamina I spinomesencephalic projection, J. Comp. Neurol., 247 (1986a) 505–515.

    Article  CAS  PubMed  Google Scholar 

  • Hylden, J., Hayashi, H. and Bennett, G., Lamina I spinomesencephalic neurons in the cat ascend via the dorsolateral funiculi, Somatosen. Res., 4 (1986b) 31–41.

    Article  CAS  Google Scholar 

  • Hylden, J.L.K., Nahin, R.L., Anton, F. and Dubner, R., Characterization of lamina I projection neurons: physiology and anatomy, In: Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord, Cervero F., Bennett G.J., Headley P.M. (Eds.), Plenum, New York, 1989, pp. 113–128.

    Chapter  Google Scholar 

  • Kayser, V., Benoist, J.-M. and Guilbaud, G., Low doses of morphine microinjected in the ventral periaqueductal gray matter of the rat depresses responses of nociceptive ventrobasal thalamic neurons, Neurosci. Lett., 37 (1983) 193–198.

    CAS  Google Scholar 

  • Kerr, F., The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord, J. Comp. Neurol., 159 (1975) 335–356.

    Article  CAS  PubMed  Google Scholar 

  • Kniffki, K.-D., Mense, S. and Schmidt, R.F., Response of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation, Exp. Brain Res., 31 (1978) 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, V.A. and Gebhart, G.F., Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia as a coincident periaqueductal gray loci, Brain Res., 124 (1977) 283–303.

    Article  CAS  PubMed  Google Scholar 

  • Liebeskind, J.C., Guilbaud, G., Besson, J.M. and Olivéras, J.L., Analgesia from electrical stimulation of the periaqueductal gray matter in the cat: behavioral observations and inhibitory effects on spinal cord interneurons, Brain Res., 50 (1973) 441–446.

    Article  CAS  PubMed  Google Scholar 

  • Magoun, H.W., Atlas, D., Ingersoll, E.H. and Ranson, S.W., Associated facial, vocal, and respiratory components of emotional expression. An experimental study, J. Neurol. Psychopath., 17 (1936) 241–255.

    Article  Google Scholar 

  • Mantyh, P.W., The ascending input to the midbrain periaqueductal gray of the primate, J. Comp. Neurol., 211 (1982) 50–64.

    Article  CAS  PubMed  Google Scholar 

  • Mantyh, P.W., Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections, J. Neurophysiol., 49 (1983) 567–581.

    CAS  PubMed  Google Scholar 

  • McMahon, S.B. and Wall, P.D., Electrophysiological mapping of brainstem projections of spinal cord lamina I cells in the rat, Brain Res., 333 (1985) 19–26.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, S.B and Wall, P.D., The significance of plastic changes in lamina I systems, In: Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord, Cervero F., Bennett G.J., Headley P.M. (Eds.) Plenum, New York, 1989, pp. 249–271.

    Chapter  Google Scholar 

  • Mehler, W.R., Some neurological species differences-a posteriori, Ann. NY Acad. Sci., 167 (1969) 424–468.

    Article  Google Scholar 

  • Meiler, S.T., Lewis, S.J., Ness, T.J., Brody, M.J. and Gebhart, G.F., Vagal afferent-mediated inhibition of a nociceptive reflex by intravenous serotonin in the rat. I. Characterization, Brain Res., 524 (1990a) 90–100.

    Article  Google Scholar 

  • Meiler, S.T., Lewis, S.J., Brody, M.J. and Gebhart, G.F., Is intravenous serotonin noxious?, Pain, 5 (1990b) S408.

    Article  Google Scholar 

  • Melzack, R. and Casey, K.L., Sensory, motivational and central control determinants of pain. A new conceptual model, In: The Skin Senses, Kenshalo D.R. (Ed.), Thomas, Springfield, 1968, pp. 423–443.

    Google Scholar 

  • Menétrey, D., Chaouch, A. and Besson, J.M., Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat, J. Neurophysiol., 44 (1980) 862–877.

    PubMed  Google Scholar 

  • Menétrey, D., Chaouch, A., Binder, D. and Besson, J.M., The origin of the spinomesencephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase, J. Comp. Neurol., 206 (1982) 193–207.

    Article  PubMed  Google Scholar 

  • Mense, S. and Schmidt, R.F., Activation of group IV afferent units from muscle by algesic agents, Brain Res., 72 (1974) 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Morin, F., Afferent projections to the midbrain tegmentum and their spinal course, Am. J. Physiol., 172 (1953) 483–496.

    CAS  PubMed  Google Scholar 

  • Olivéras, J.-L., Besson, J.-M., Guilbaud, G. and Liebeskind, J.C., Behavioral and electrophysiological evidence of pain inhibition from midbrain stimulation in the cat, Exp. Brain Res., 20 (1974) 32–44.

    Article  PubMed  Google Scholar 

  • Olivéras, J.-L., Guilbaud, G. and Besson, J.M., A map of serotoninergic structures involved in stimulation producing analgesia in unrestrained freely moving cats, Brain Res., 164 (1979) 317–322.

    Article  PubMed  Google Scholar 

  • Sandkühler, J. and Gebhart, G.F., Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in phenobarbital anesthetized rat, Brain Res., 305 (1984) 77–87.

    Article  PubMed  Google Scholar 

  • Skultety, F., Relation of periaqueductal gray matter to stomach and bladder motility, Neurology, 9 (1959) 190–197.

    Article  CAS  PubMed  Google Scholar 

  • Spiegel, E.A, Kletzkin, M. and Szekely, E.G., Pain reactions upon stimulation of the tectum mesencephali, J. Neuropathol. Exp. Neurol., 13 (1954) 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Spruijt, B.M., Cools, A.R. and Gispen, W.H., The periaqueductal gray: a prerequisite for ACTH-induced excessive grooming, Behav. Brain Res., 20 (1986) 19–25.

    Article  CAS  PubMed  Google Scholar 

  • Swett, J.E., McMahon, S.B. and Wall, P.D., Long ascending projections to the midbrain from cells of lamina I and nucleus of the dorsolateral funiculus of the rat spinal cord, J. Comp. Neurol., 238 (1985) 401–416.

    Article  CAS  PubMed  Google Scholar 

  • Wiberg, M. and Blomqvist, A., The spinomesencephalic tract in the cat: its cells of origin and termination pattern as demonstrated by the intraxonal transport method, Brain Res., 291 (1984) 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Wiberg, M., Westman, J. and Blomqvist, A., Somatosensory projections to the mesencephalon: an anatomical study in the monkey, J. Comp. Neurol., 264 (1987) 92–117.

    Article  CAS  PubMed  Google Scholar 

  • Willis, W.D., The pain system, In: Pain and Headache, Vol. 8, Karger, New York, 1985.

    Google Scholar 

  • Willis, W.D., Anatomy and physiology of descending control of nociceptive responses of dorsal horn neurons: comprehensive review, Prog. Brain Res., 77 (1988) 1–29.

    Article  PubMed  Google Scholar 

  • Willis, W.D., Projections of the superficial dorsal horn to the midbrain and thalamus, In: Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord, Cervero F., Bennett G.J., Headley P.M. (Eds.), Plenum, New York, 1989, pp. 217–237.

    Chapter  Google Scholar 

  • Willis, W.D. and Coggeshall, R.E., Sensory mechanisms of the spinal cord, Plenum, New York, 1978.

    Google Scholar 

  • Yaksh, T.L., Yeung, J.C. and Rudy, T.A., Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observations of differential effects within the periaqueductal gray, Brain Res., 114 (1976) 83–104.

    Article  CAS  PubMed  Google Scholar 

  • Yezierski, R.P., The spinomesencephalic tract: projections from the lumbosacral spinal cord of the rat, cat and monkey, J. Comp. Neurol., 267 (1988) 131–146.

    Article  CAS  PubMed  Google Scholar 

  • Yezierski, R.P., The effects of midbrain and medullary stimulation on spinomesencephalic tract cells in the cat, J. Neurophysiol., 63 (1990) 240–255.

    CAS  PubMed  Google Scholar 

  • Yezierski, R.P. and Broton, J.G., Functional properties of spinomesencephalic tract (SMT) cells in the upper cervical spinal cord of the cat, Pain, 45 (1991) 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Yezierski, R.P., Hirata, H. and Olson, N.A., Responses of spinomesencephalic tract (SMT) cells to thermal stimuli, Soc. Neurosci. Abstr., 11 (1985) 172.

    Google Scholar 

  • Yezierski, R.P. and Schwartz, R.H., Response and receptive field properties of spinomesencephalic tract cells in the cat, J. Neurophysiol., 55 (1986) 76–96.

    CAS  PubMed  Google Scholar 

  • Yezierski, R.P., Sorkin, L.S. and Willis, W.D., Response properties of spinal neurons projecting to midbrain or midbrain and thalamus in the monkey, Brain Res., 437 (1987) 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Yezierski, R.P. and Mendez C.M., Spinal distribution and collateral projections of rat spinomesencephalic tract cells, Neurosci., 1991, in press.

    Google Scholar 

  • Zamir, N. and Maixner, W., The relationship between cardiovascular and pain regulatory systems, Annals NY Acad. Sci., 467 (1986) 371–384.

    Article  CAS  Google Scholar 

  • Zemlan, F.P., Leonard, C.M., Kow, L. and Pfaff, D.W., Ascending tracts of the lateral columns of the rat spinal cord: a study using the silver impregnation and horseradish peroxidase techniques, Exp. Neurol., 62 (1978) 298–334.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Carlton, S.M., Sorkin, L.S. and Willis, W.D., Collaterals of primate spinothalamic tract neurons to the periaqueductal gray, J. Comp. Neurol., 296 (1990) 277–290.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yezierski, R.P. (1991). Somatosensory Input to the Periaqueductal Gray: A Spinal Relay to a Descending Control Center. In: Depaulis, A., Bandler, R. (eds) The Midbrain Periaqueductal Gray Matter. NATO ASI Series, vol 213. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3302-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3302-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6453-5

  • Online ISBN: 978-1-4615-3302-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics