Skip to main content

Agroinfection as a tool for the Investigation of Plant-Pathogen Interactions

  • Chapter
Plant Molecular Biology 2

Part of the book series: NATO ASI Series ((NSSA,volume 212))

  • 219 Accesses

Abstract

The fascinating way by which Agrobacterium invades a host plant has been the subject of intensive investigations by various laboratories, and has opened new avenues of research (reviewed by other authors in this volume, and in references quoted in their articles). Most of these avenues of research utilize the uncanny ability of this bacterium to effect an inter-kingdom type of exchange of genetic information, namely to transfer sequences of nucleic acids from bacterium to plant. This genetic exchange begins with the detection of substances released by wounded plant cells, to which the bacterium reacts by chemotaxis and induction of the bacterial virulence genes necessary for DNA transfer, and ends with the integration and expression of bacterial genes in the plant, that direct production of a plant tumour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolton G W, Nester E W, Gordon M P 1986 Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–985.

    Article  PubMed  CAS  Google Scholar 

  • Boulton M I, Buchholz W G, Marks M S, Markham P G, Davies J W 1989 Specificity of Agrobacteriwn-mediated delivery of maize streak virus DNA to members of the gramineae. Plant Molec. Biol. 12:31–40.

    Article  CAS  Google Scholar 

  • Charest P J, Iyer V N, Miki B L 1989 Virulence of Agrobacterium tumefaciens strains with Brassica napus and Brassica juncea. Plant Cell Reports 8:303–306.

    Article  Google Scholar 

  • Christie P J, Ward J E, Winans S C., Nester E W 1988 The Agrobacterium tumefadens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J. Bacteriol. 170:2659–2667.

    PubMed  CAS  Google Scholar 

  • Corcuera L J, Woodward M D, Helgeson J P, Kelman A, Upper C D 1978 2, 4-Dihydroxy-7-methoxy-2H-l, 4-benzoxazin-3(4H)-one, an Inhibitor from Zea mays with differential Activity against soft rotting Erwinia species. Plant Physiol. 61:791–795.

    Article  PubMed  CAS  Google Scholar 

  • Davies J W, Townsend R, Stanley J 1987 The structure, expression, functions and possible exploitation of geminivirus genomes. In: (eds) Hohn, T, Schell, J. Plant Gene Research: Plant Plant DNA Infectious Agents. Springer, New York and Vienna, pp.31–52.

    Chapter  Google Scholar 

  • Dehne H, Kreysig D 1982 Natürliche organische Makromolüle. In: (eds) Kempter G, Kasper F, Kresig D, Uhlemann E, Welsch F. Chemie für Lehrer Volume 15. VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Donson J, Gunn H V, Woolston C J, Pinner M S, Boulton M I, Mullineaux P M., Davies J W 1988. Agrobacterium-mediated infectivity of cloned digitaria streak virus DNA. Virology 162:248–250.

    Article  PubMed  CAS  Google Scholar 

  • Dürrenberger F, Crameri A, Hohn B, Kouklolikova-Nicola Z 1989 Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degredation. Proc. Natl. Acad. Sci. USA. 86:9154–9158.

    Article  PubMed  Google Scholar 

  • Elmer J S, Sunter G, Gardiner W E, Brand L, Browning C K, Bisaro D M., Rogers S G 1988 Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol. Biol. 10:225–234.

    Article  CAS  Google Scholar 

  • Engstroem P, Zambryski P, Van Montagu M., Stachel S 1987 Characterisation of Agrobacterium tumefadens virulence proteins induced by the plant factor acetosyringone. J. Mol. Biol. 197:635–645.

    Article  Google Scholar 

  • Grimsley N H 1990 Agroinfection. Physiol. Plant. 79:147–153.

    Article  CAS  Google Scholar 

  • Grimsley N H, Hohn B, Hohn T, Waiden R 1986a Agroinfection, an alternative route for viral infection of plants by using the Ti plasmid. Proc.Natl.Acad.Sci.USA. 83:3282–3286.

    Article  PubMed  CAS  Google Scholar 

  • Grimsley N H, Hohn T, Hohn B 1986b Recombination in a plant virus: template-switching in cauliflower mosaic virus. EMBO J. 5:641–646.

    PubMed  CAS  Google Scholar 

  • Grimsley N H, Bisaro D 1987. Agroinfection. In: (eds) Hohn, T, Schell, J. Plant Gene Research: Plant Plant DNA Infectious Agents. Springer, New York and Vienna. pp.87–107.

    Chapter  Google Scholar 

  • Grimsley N H, Hohn T, Davies J W, Hohn B 1987 Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325:177–179.

    Article  CAS  Google Scholar 

  • Grimsley N H, Ramos C., Hein T, Hohn B, 1988 Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Biotechnology 6:185–189.

    Article  Google Scholar 

  • Grimsley N H, Hohn B, Ramos C., Kado C., Rogowsky P 1989 DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol. Gen. Genet., 217:309–316.

    Article  PubMed  CAS  Google Scholar 

  • Gronenborn B 1987 The molecular biology of cauliflower mosaic virus and its application as a plant gene vector. In: (eds) Hohn, T, Schell, J. Plant Gene Research: Plant DNA Infectious Agents. Springer, New York and Vienna, pp. 1–29.

    Chapter  Google Scholar 

  • Herrera-Estrella A, Chen Z, Van Montagu M., Wang K 1988 VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5′ terminus of T-strand molecules. EMBO J. 7:4055–4062.

    PubMed  CAS  Google Scholar 

  • Hood E, Jen G, Kayes L, Kramer J, Fraley R T, Chilton M-D, 1984 Restriction endonuclease map of pTi Bo542, a potential Ti plasmid vector for genetic engeneering of plants. Biotechnology 2:702–708.

    Article  CAS  Google Scholar 

  • Huss B, Bonnard G, Otten L 1989 Isolation and functional analysis of a set of auxin genes with low root-inducing activity from an Agrobacterium tumefaciens biotypeIII strain. Plant Molecular Biology 12:271–283.

    Article  CAS  Google Scholar 

  • Jin S, Komari T, Gordon M P, Nester E W 1987 Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281J. Bacteriol. 169:4417–4425.

    CAS  Google Scholar 

  • Keen N T, Staskawicz B 1988 Host range determinants in plant pathogens and symbionts. Ann. Rev. Microbiol. 42:421–440.

    Article  Google Scholar 

  • Komari T, Halperin W, Nester E W 1986 Physical and functional map of supervirulent Agrobacterium tumefaciens Tumor-inducing plasmid pTiBo542. J. Bacteriol. 166:88–94.

    PubMed  CAS  Google Scholar 

  • Lazarowitz S G 1988 Infectivity and complete nucleotide sequence of the genome of a South African isolate of maize streak virus. Nucl. Acids Res. 16:229–249.

    Article  PubMed  CAS  Google Scholar 

  • Otten L, De Greve H, Leemans J, Hain R, Hooykaas P, Schell J 1984 Restoration of virulence of Vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol.Gen.Genet. 195:159–163.

    Article  CAS  Google Scholar 

  • Otten L, Piotrowiak G, Hooykaas P, Dubois M., Szegedi E, Schell J 1985 Identification of an Agrobacterium tumefaciens pTiB6S3 vir region fragment that enhances the virulence of pTiC58. Mol Gen Genet 199:189–193.

    Article  CAS  Google Scholar 

  • Paulus F, Huss B, Bonnard G, Ride M., Szegedi E, Tempe J, Petit A, Otten L 1989 Molecular systematics of biotype III Ti plasmids of Agrobacterium tumefaciens. Molec. Plant-Microbe Interact. 2:64–74.

    Article  Google Scholar 

  • Raineri D M., Bottino P, Gordon M P, Nester E W 1990 Agrobacterium-mediated transformation of rice (Oryza sativa L.) Biotechnology 8:33–38.

    Article  CAS  Google Scholar 

  • Rodenburg C W, De Groot MJA, Schilperoort R A, Hooykaas P Y J 1989 Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts. Plant Mol. Biol. 13:711–719.

    Article  PubMed  CAS  Google Scholar 

  • Sahi S V, Chilton M D, Chilton W S 1990 Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 87:3879–3883.

    Article  CAS  Google Scholar 

  • Spencer P A, Towers G H N 1988 Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 27:2781–2785.

    Article  CAS  Google Scholar 

  • Stachel S E, Messens E, Van Montagu M., Zambryski P 1985 Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629.

    Article  Google Scholar 

  • Usami S, Okamoto S, Takebe I, Machida Y 1988 Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. Proc. Natl. Acad. Sci. USA 85:3748–3752.

    Article  PubMed  CAS  Google Scholar 

  • Ward E R, Barnes W M 1988 VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5’ end of T-strand DNA. Science 242:927–930.

    Article  CAS  Google Scholar 

  • Woolston C J, Barker R, Gunn H, Boulton M I, Mullineaux P M 1988 Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol.Biol. 11:35–43.

    Article  CAS  Google Scholar 

  • Young C., Nester E W 1988 Association of the VirD2 Protein with the 5′ End of T Strands in Agrobacterium tumefaciens. J of Bacteriol. 170:3367–3374.

    CAS  Google Scholar 

  • Zerback R, Dressier K, Hess D 1989 Flavonoid compounds from pollen and stigma of Petunia hybrida: inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid. Plant Sci. 62:83–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grimsley, N., Jarchow, E., Oetiker, J., Schlaeppi, M., Hohn, B. (1991). Agroinfection as a tool for the Investigation of Plant-Pathogen Interactions. In: Herrmann, R.G., Larkins, B.A. (eds) Plant Molecular Biology 2. NATO ASI Series, vol 212. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3304-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3304-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6454-2

  • Online ISBN: 978-1-4615-3304-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics