Skip to main content

Thermally Activated Depinning of Vortices in High-T c Superconductors

  • Chapter
High-Temperature Superconductivity
  • 408 Accesses

Abstract

In high-T c superconductors thermally activated depinning of the flux lines leads to the appearance of a finite resistivity when a magnetic field is applied. At low current densities this corresponds to a finite diffusivity of the magnetic flux, whose exponential temperature dependence explains a large variety of experiments without having to introduce concepts like flux-line lattice melting or phase transitions. Nonlocal elasticity and material anisotropy soften the flux-line lattice and strongly enhance its thermal fluctuations and pinning-caused distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Abrikosov, Zh. Eksper. Theor. Fix 20, 1064 (1950)

    Google Scholar 

  2. A. A. Abrikosov, Soviet Phys. - J. Exp. Theor. Phys 5, 1174 (1975).

    Google Scholar 

  3. P. W. Anderson, Phys. Rev. Lett 9, 309 (1962).

    Article  ADS  Google Scholar 

  4. P. W. Anderson and Y. B. Kim, Rev. Mod. Phys 36, 39 (1964).

    Article  ADS  Google Scholar 

  5. J. Bardeen and M. J. Stephen, Phys. Rev 140, A1197 (1965).

    Article  ADS  Google Scholar 

  6. M. Tinkham, Phys. Rev. Lett 13, 804 (1964)

    Article  ADS  Google Scholar 

  7. C.-R. Hu and R. S. Thompson, Phys. Rev B 6, 110 (1972)

    ADS  Google Scholar 

  8. A. I. Larkin and Yu. N. Ovchinnikov, Soy. Phys.-JETP 37, 557 (1973)(small B)

    ADS  Google Scholar 

  9. R. S. Thompson and C.-R. Hu, Phys. Rev. Lett 20, 1352 (1971) (large B)

    Article  ADS  Google Scholar 

  10. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975) p. 161 ff and p. 273 ff

    Google Scholar 

  11. L. P. Gor’kov and N. B. Kopnin, Soy. Phys.-Uspechi 18, 496 (1976)

    Article  Google Scholar 

  12. V. V. Shmidt and G. S. Mkrtchyan, Soy. Phys.-Uspechi 17, 170 (1974)

    Article  ADS  Google Scholar 

  13. A. I. Larkin and Yu. N. Ovchinnikov, in: Nonequilibrium Superconductivity, D. N. Langenberg and A. I. Larkin, eds. (Elsevier, Amsterdam, 1986), p. 493.

    Google Scholar 

  14. B. I. Ivlev and N. B. Kopnin, Phys. Rev. B 42, 10052 (1990)

    Article  ADS  Google Scholar 

  15. J. R. Clem and W. M. Coffey, Phys. Rev. B 42, 6209 (1990).

    Article  ADS  Google Scholar 

  16. J. R. Clem, in: Progress in Low Temperature Phyiscs,R. Nikolski, ed. (World Scientific, Singapore, 1990), Vol. 25, p. 64.

    Google Scholar 

  17. M. R. Beasley, R. Labusch, and W. W. Webb, Phys. Rev 181, 682 (1969)

    Article  ADS  Google Scholar 

  18. C. Rossel et al., Physica C 165, 233 (1990)

    Article  ADS  Google Scholar 

  19. P. Berghuis and P. H. Kes, Physica B 165 & 166, 1169 (1990).

    Article  Google Scholar 

  20. Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett 60, 2202 (1988).

    Article  ADS  Google Scholar 

  21. D. Dew-Hughes, Cryogenics 28, 674 (1988).

    Article  ADS  Google Scholar 

  22. P. H. Kes, J. Aarts, J. van den Berg, C. J. van der Beek, and J. A. Mydosh, Supercond. Sci. Technol 1, 242 (1989).

    Article  ADS  Google Scholar 

  23. M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975) p. 175 ff.

    Google Scholar 

  24. E. H. Brandt, Z. Physik B 80, 167 (1990).

    Article  ADS  Google Scholar 

  25. V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett 22, 1364 (1969)

    Article  ADS  Google Scholar 

  26. V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. Errata 23, 274 (1969)

    Article  ADS  Google Scholar 

  27. M. Inui et al., Phys. Rev. Lett 63, 2421 (1989).

    Article  ADS  Google Scholar 

  28. E. Conen and A. Schmid, J. Low Temp. Phys 17, 331 (1974).

    Article  ADS  Google Scholar 

  29. T. T. M. Palstra, B. Battlogg, R. B. van Dover, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev B 41

    Google Scholar 

  30. M. P. A. Fisher, Phys. Rev. Lett 62, 1415 (1989).

    Article  ADS  Google Scholar 

  31. D. S. Fischer, M. P. A. Fischer, and D. A. Huse, Phys. Rev. B 43, 130 (1991).

    Article  ADS  Google Scholar 

  32. M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Phys. Rev. Lett 63, 2303 (1989).

    Article  ADS  Google Scholar 

  33. T. Nattermann, Phys. Rev. Lett 64, 2454 (1990).

    Article  ADS  Google Scholar 

  34. R. H. Koch et al. Phys. Rev. Lett 63,1511 (1989)

    Article  ADS  Google Scholar 

  35. P. L. Gammel, L. F. Schneemeyer, and D. J. Bishop, Phys. Rev. Lett (submitted).

    Google Scholar 

  36. K. A. Müller, M. Takashige, and J. G. Bednorz, Phys. Rev. Lett 58, 1143 (1987)

    Article  ADS  Google Scholar 

  37. I. Morgenstern, K. A. Müller, and J. G. Bednorz, Z. Phys. B 69, 33 (1987)

    Article  ADS  Google Scholar 

  38. C. Rossel, Y. Maeno, and I. Morgenstern, Phys. Rev. Lett 62, 681 (1989)

    Article  ADS  Google Scholar 

  39. R. Oppermann, Z. Phys. B 68, 329 (1987)

    Article  ADS  Google Scholar 

  40. R. Oppermann, Sol. St. Comm 65, 1391 (1988)

    Article  ADS  Google Scholar 

  41. R. Oppermann, Physica A 167, 301 (1990)

    Article  ADS  Google Scholar 

  42. M. Tinkham, Phys. Rev. Lett 61, 1658 (1988).

    Article  ADS  Google Scholar 

  43. S. Chakravarty, B. I. Ivlev, and Yu. N. Ovchinnikov, Phys. Rev. Lett 64,3187 (1990)

    Article  ADS  Google Scholar 

  44. S. Chakravarty, B. I. Ivlev, and Yu. N. Ovchinnikov, Phys. Rev. B 42,2143 (1990).

    Article  ADS  Google Scholar 

  45. M. V. Feigel’man and V. M. Vinokur, Phys. Rev. B 41, 8986 (1990)

    Article  ADS  Google Scholar 

  46. V. M. Vinokur, M. V. Feigel’man, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett 65,259 (1990).

    Article  ADS  Google Scholar 

  47. M. V. Feigel’man, V. B. Geshkenbein, and A. I. Larkin, Physica C 167,177 (1990).

    Article  ADS  Google Scholar 

  48. W. E. Lawrence and S. Doniach, Proc. 12th Internatl. Conf. of Low Temperature Physics LT12 (E. Kanda ed., Academic Press of Japan, Kyoto, 1971) p. 361.

    Google Scholar 

  49. R. A. Klemm, A. Luther, and M. R. Beasley, Phys. Rev. B 12,877 (1975)

    Article  ADS  Google Scholar 

  50. L. N. Bulayevskiĭ, Int. J. Mod. Phys (a review) (in print).

    Google Scholar 

  51. J. R. Clem, Phys. Rev. B (pancake vortices) (in print).

    Google Scholar 

  52. V. M. Vinokur, P. H. Kes, and A. E. Koshelev, Physica C 168,29 (1990).

    Article  ADS  Google Scholar 

  53. P. Esquinazi, Solid State Comm 74, 75 (1990)

    Article  ADS  Google Scholar 

  54. A. Gupta et al., Europhys. Lett 10, 663 (1989)

    Article  ADS  Google Scholar 

  55. A. Gupta et al., Physica C 162–164, 667 (1989)

    Article  Google Scholar 

  56. A. Gupta, P. Esquinazi, and H. F. Braun, Phys. Rev. Lett 63,1869 (1989)

    Article  ADS  Google Scholar 

  57. A. Gupta, P. Esquinazi, and H. F. Braun, Physica B 165 & 166, 1151 (1990).

    Google Scholar 

  58. P. H. Kes et al., Supercond. Sci. Technol 1, 242 (1989).

    Article  ADS  Google Scholar 

  59. E. H. Brandt, Z. Physik B 80,167 (1990).

    Article  ADS  Google Scholar 

  60. E. H. Brandt, Int. J. Mod. Phys. B (a review) (in print).

    Google Scholar 

  61. A. Hebard, P. Gammel, C. Rice, and A. Levi, Phys. Rev. B 40, 5243 (1989).

    Article  ADS  Google Scholar 

  62. P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J. Bishop, Phys. Rev. Lett 61,1666 (1988)

    Article  ADS  Google Scholar 

  63. comment: E. H. Brandt, P. Esquinazi, and G. Weiss, Phys Rev. Lett 62, 2330 (1989).

    Article  ADS  Google Scholar 

  64. E. H. Brandt, P. Esquinazi, H. Neckel, and G. Weiss, Phys. Rev. Lett 56,89 (1986)

    Article  ADS  Google Scholar 

  65. E. H. Brandt, P. Esquinazi, H. Neckel, and G. Weiss, J. Low Temp. Phys 63, 187 (1986)

    Article  ADS  Google Scholar 

  66. P. Esquinazi, et al., J. Low Temp. Phys 64, 1 (1986)

    Article  ADS  Google Scholar 

  67. E. H. Brandt, J. de Physique, Colloque C8 (No. 27, Vol. 48), 31 (1987).

    Google Scholar 

  68. A. Maeda et al. Physica B 165 & 166,1363 (1990).

    Google Scholar 

  69. J. Pankert, Physica C 168, 335 (1990)

    Article  ADS  Google Scholar 

  70. J. Pankert, et al., Phys. Rev. Lett 65, 3052 (1990)

    Article  ADS  Google Scholar 

  71. P. Lemmens, et al., Physica C (in print).

    Google Scholar 

  72. B. Pümpin, H. Keller et al., Z. Phys. B 72,175 (1988)

    Article  ADS  Google Scholar 

  73. P. Zimmermann et al., Hyperfine Interactions 63–65, 25 (1990)

    Google Scholar 

  74. V. G. Grebinnik et al., dito,p. 66.

    Google Scholar 

  75. E. H. Brandt, Phys. Rev. B 37,2349 (1988)

    Article  ADS  Google Scholar 

  76. E. H. Brandt, J. Low Temp. Phys 73,335 (1988)

    Article  ADS  Google Scholar 

  77. E. H. Brandt and A. Seeger, Adv. Phys 35,189 (1986).

    Article  ADS  Google Scholar 

  78. D. Herlach, et al., Hyperfine Interactions 63–65,41 (1990), and to be published.

    Google Scholar 

  79. J. Kober et al., Phys. Rev. Lett (in print).

    Google Scholar 

  80. C. P. Bean, Rev. Mod. Phys 36,31 (1964)

    Article  ADS  Google Scholar 

  81. C. P. Bean, J. Appl. Phys 41,2482 (1970).

    Article  ADS  Google Scholar 

  82. E. H. Brandt, J. Low Temp. Phys 26, 709; 735 (177)

    Google Scholar 

  83. E. H. Brandt, J. Low Temp. Phys 28,263, 291 (1977)

    Article  ADS  Google Scholar 

  84. E. H. Brandt, Phys. Rev. B, 34,6514 (1986).

    Article  ADS  Google Scholar 

  85. A. Sudbø and E. H. Brandt, Phys. Rev. B (in print)

    Google Scholar 

  86. A. Sudbø and E. H. Brandt, Phys. Rev. Lett (submitted);

    Google Scholar 

  87. A. Houghton, R. A. Pelcovits, and A. Sudbø, Phys. Rev. B 40,6763 (1989).

    Article  ADS  Google Scholar 

  88. D. R. Nelson and H. S. Seung, Phys. Rev. B 39,9174 (1989).

    Google Scholar 

  89. M. A. Moore, Phys. Rev B 39,9174 (1989).

    Google Scholar 

  90. E. H. Brandt, Phys. Rev. Lett 63,1106 (1989).

    Article  ADS  Google Scholar 

  91. S. N. Artemenko, I. G. Gorlova, Yu. I. Latyshev, Phys. Lett. A 138, 428 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brandt, E.H. (1991). Thermally Activated Depinning of Vortices in High-T c Superconductors. In: Ashkenazi, J., Barnes, S.E., Zuo, F., Vezzoli, G.C., Klein, B.M. (eds) High-Temperature Superconductivity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3338-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3338-2_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6471-9

  • Online ISBN: 978-1-4615-3338-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics