Skip to main content

Supersymmetry and Gauge Invariance in Stochastic Quantization

  • Chapter
Quantum Mechanics of Fundamental Systems 3
  • 188 Accesses

Abstract

Stochastic quantization is an alternative to the Feynman path integral for quantizing a theory. In Ref. 1, Parisi and Wu have suggested applying stochastic quantization to gauge theories. Numerous works have followed.2 One of the motivations of Parisi and Wu was that no gauge fixing is necessary to compute gauge-invariant quantities in stochastic quantization, since the stochastic evolution can be consistently defined from a drift force equal to minus the gradient of the classical action with respect to the gauge field, with no reference to the ghosts that occur in the ordinary path integral formalism. However, it has been realized that it is useful to introduce a kind of gauge fixing in stochastic quantization: a drift force can be defined along gauge orbits.3 This permits a consistent renormalizability of the stochastically quantized gauge theory. Moreover, with a particular choice of this drift force, it seems that the gauge field is confined within the first Gribov horizon, and so one naturally escapes the Gribov problem.3,4 The freedom in the Langevin equation of a gauge theory, which permits the introduction of the gauge-dependent drift force, follows in fact from the simple geometrical principle that stochastic evolution be compatible with the gauge symmetry.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Parisi and Y.S. Wu, Sci. Sinica 24, 484 (1981).

    MathSciNet  Google Scholar 

  2. For reviews, see D. Zwanziger, Stochastic Quantization Of Gauge Fields, Proc. of the 1985 Erice School on Fundamental Problems of Gauge Field Theory (G. Velo and A. Wightman, eds.), Plenum, New York (1986); E. Seiler, Acta Phys. Austriaca 26, 259 (1984); P. H. Damgaard and H. Huffel, Phys. Rep. 152, 227 (1987).

    Google Scholar 

  3. D. Zwanziger, Nucl. Phys. B 192, 259 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  4. D. Zwanziger, Nucl. Phys. B 209, 336 (1982); E. Seiler, I. O. Stamatescu, and D. Zwanziger, Nucl. Phys. B 239 204 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Baulieu, Phys. Lett. B 167, 421 (1986); L. Baulieu, Nucl. Phys. B 270, 507 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  6. L. Baulieu and B. Grossman, Phys. Lett. B 212, 351 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Birmingham, M. Rakowski, and G. Thompson, Phys. Lett. B 214, 381 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Gozzi, Phys. Rev. D 28, 1922 (1983); J. Zinn-Justin, Nucl. Phys. B 275, 135 (1986); 30, 1218 (1984); R. F. Alvarez-Estrada and A. Munoz Sudupe, Phys. Lett. B 164, 102 (1985); 166B, 58 (1986); K. Okono, Nucl. Phys. B 289, 109 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Zwanziger and J. Zinn-Justin, Nucl. Phys. B 295, 297 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  10. L. Baulieu, Phys. Lett. B 479, 232 (1989); Yue-Yu, Beijing preprint BIHEP-Th-893 (1989).

    Google Scholar 

  11. L. Baulieu and D. Zwanziger, Nucl. Phys. B 193, 163 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Baulieu and I. M. Singer, Nucl. Phys. Proc. Suppl. B 5, 12 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  13. L. Baulieu, A. Bilal, and M. Picco, Nucl. Phys. B 346, 507 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  14. H. S. Chan and M. B. Halpern, Phys. Rev. D 33, 540 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Baulieu and B. Grossman, Phys. Lett. B 214, 223 (1988).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baulieu, L. (1992). Supersymmetry and Gauge Invariance in Stochastic Quantization. In: Teitelboim, C., Zanelli, J. (eds) Quantum Mechanics of Fundamental Systems 3. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3374-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3374-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6489-4

  • Online ISBN: 978-1-4615-3374-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics