Skip to main content

The Antifield-BRST Formalism for Gauge Theories

  • Chapter
Quantum Mechanics of Fundamental Systems 3
  • 200 Accesses

Abstract

It has been recognized for some time now that the BRST method provides one of the most powerful tools for quantizing theories endowed with a local gauge freedom. This method is extremely useful not only in the path-integral approach, but also in the operator formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. S. Fradkin and M. A. Vasiliev, Phys. Lett. 72B, 70 (1977); G. Sterman, P. K. Townsend, and P. van Nieuwenhuizen, Phys. Rev. D17, 1501 (1978); R. E. Kallosh, Nucl. Phys. B141, 141 (1978).

    MathSciNet  ADS  Google Scholar 

  2. M. B. Green and J. H. Schwarz, Phys. Lett. 136B, 367 (1984).

    ADS  Google Scholar 

  3. L. Brink and J. H. Schwarz, Phys. Lett. 100B, 310 (1981); W. Siegel, Phys. Lett. 128B, 397 (1983). For more information on the off-shell closure of the gauge algebra of the superpar-ticle, see L. Brink and M. Henneaux, Principles of String Theory, Plenum Press, New York (1988); U. Lindström, M. Roček, W. Siegel, P. van Nieuwenhuizen, and A. E. van de Ven, Phys. Lett. 224B, 285 (1989).

    MathSciNet  ADS  Google Scholar 

  4. R. P. Feynman, Acta Phys. Polon. 24, 697 (1963); L. D. Faddeev and V. N. Popov, Phys. Lett. 25B, 30 (1967); B. S. De Witt, Phys. Rev. 162, 1195 (1967); 1239.

    MathSciNet  Google Scholar 

  5. E. S. Fradkin and G. A. Vilkovisky, Phys. Lett. 55B, 224 (1975); I. A. Batalin and G. A. Vilkovisky, Phys. Lett. 69B, 309 (1977); E. S. Fradkin and T. E. Fradkina, Phys. Lett. 72B, 343 (1978); I. A. Batalin and E. S. Fradkin, Phys. Lett. 122B, 157 (1983).

    MathSciNet  ADS  Google Scholar 

  6. I. A. Batalin and G. A. Vilkovisky, Phys. Lett. 102B, 27 (1981); 120B, 166 (1983); Phys. Rev. D28, 2567 (1983); J. Math. Phys. 26, 172 (1985).

    MathSciNet  ADS  Google Scholar 

  7. R. E. Kallosh, Nucl. Phys. B141, 141 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  8. B. de Wit and J. W. van Holten, Phys. Lett. 79B, 389 (1979); J. W. van Holten, “On the construction of supergravity theories,” Chapter V, Ph.D. Thesis (Leiden, 1980).

    Google Scholar 

  9. M. Henneaux, Phys. Rep. 126, 1 (1985); I. A. Batalin and E. S. Fradkin, Rev. Nuovo Cimento 9, 1 (1986); M. Henneaux, Classical Foundations of BRST Symmetry, Bibliopolis, Naples (1988).

    Article  MathSciNet  ADS  Google Scholar 

  10. B. S. De Witt, in Dynamical Theory of Groups and Fields (B. S. De Witt and C. M. De Witt eds.), Gordon and Breach, New York (1965); Phys. Rev. 162 1195 (1967)

    Google Scholar 

  11. A. S. Schwarz, Lett. Math. Phys. 2, 247 (1978); J. Schonfeld, Nucl. Phys. B185, 157 (1981); S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48, 372 (1984); Ann. Phys. (NY) 140, 372 (1984); E. Witten, Commun. Math. Phys. 121, 351 (1989).

    Article  ADS  MATH  Google Scholar 

  12. B. L. Voronov and I. V. Tyutin, Theoret and Math. Phys. 50, 218 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  13. I. A. Batalin and G. A. Vilkovisky, Nucl. Phys. B234, 106 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Henneaux, C. Teitelboim, and J. Zanelli, Nucl. Phys. B332, 169 (1990). Related works include J. L. Anderson and P. G. Bergmann, Phys. Rev. 83, 1018 (1951); N. Mukunda, Phys. Scr. 21, 783 (1980); L. Castellani, Ann. Phys. (NY) 143, 357 (1982); C. Batlle, J. Gomis, X. Gracia, and J. M. Pons, J. Math. Phys. 30, 1345 (1989); and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  15. P. A. M. Dirac, Canad. J. Math. 2, 129 (1950); “Lectures on Quantum Mechanics,” Yeshiva University (1964).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. E. Peierls, Proc. R. Soc. London A214, 143 (1952).

    MathSciNet  ADS  Google Scholar 

  17. Č. Crnković and E. Witten, in Newton’s Tercentenary Volume (S. Hawking and W. Israel, eds.), Cambridge University Press, Cambridge (1988).

    Google Scholar 

  18. G. J. Zuckerman, “Action Principles and Global Geometry,” Proc. Conf. Math. Aspects of String Theory, San Diego, 1986 (S. T. Yau, ed.), World Scientific, Singapore (1987).

    Google Scholar 

  19. A. Ashtekar, L. Bombelli, and R. Kour, in “Physics of Space,” Proc. of Maryland Meeting 1986 (Kim and Zachary, eds.), Springer Verlag, Berlin (1988).

    Google Scholar 

  20. M. Henneaux, Commun. Math. Phys. 140, 1 (1991).

    Google Scholar 

  21. W. Siegel, Nucl. Phys. B238, 307 (1984).

    Article  ADS  Google Scholar 

  22. J. Fisch and M. Henneaux, Commun. Math. Phys. 128, 627 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M. Henneaux and C. Teitelboim, in Quantum Mechanics of Fundamental Systems (C. Teitelboim and J. Zanelli, eds.), Plenum Press, New York (1989).

    Google Scholar 

  24. J. L. Koszul, Bull Soc. Math. France 78, 5 (1950).

    Google Scholar 

  25. A. Borel, Ann. Math. 57, 115 (1953).

    Google Scholar 

  26. J. Tate, Illinois J. Math. 1, 14 (1957).

    MathSciNet  MATH  Google Scholar 

  27. J. Fisch, M. Henneaux, J. Stasheff, and C. Teitelboim, Commun. Math. Phys. 120, 379 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J. D. Stasheff, Trans. Amer. Math. Soc. 18, 215, 293 (1963); V. K. A. M. Gugenheim and J. P. May, Mem. Amer. Math. Soc. 142, 1 (1974); V. K. A. M. Gugenheim and J. D. Stasheff, Bull. Soc. Math. Belg. Sér A 38, 237 (1986).

    MathSciNet  Google Scholar 

  29. M. Henneaux and C. Teitelboim, Commun. Math. Phys. 115, 213 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. J. Stasheff, Bull. Amer. Math. Soc. 19, 287 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Kugo and S. Uehara, Nucl. Phys. B197, 378 (1982); F. R. Ore and P. van Nieuwenhuizen, Nucl. Phys. B204, 317 (1982); L. Alvarez-Gaumé and L. Baulieu, Nucl. Phys. B212, 255 (1983).

    Article  ADS  Google Scholar 

  32. W. Siegel, Stony Brook preprint ITP-SB-89-14 (1989).

    Google Scholar 

  33. C. Batlle, J. Gomis, J. París, and J. Roca, Barcelona preprint UB-ECM-PF 2/89 (1989).

    Google Scholar 

  34. J. Fisch and M. Henneaux, Phys. Lett. 226B, 80 (1989).

    MathSciNet  ADS  Google Scholar 

  35. G.’ t Hooft, in Recent Developments in Gravitation (M. Lévy and S. Deser, eds.), Plenum Press, New York (1979).

    Google Scholar 

  36. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).

    Google Scholar 

  37. J. Alfaro and P. H. Damgaard, Phys. Lett. 222B, 425 (1989); J. Alfaro, private communication (1989).

    MathSciNet  ADS  Google Scholar 

  38. J. Zinn-Justin, in Trends in elementary particle theory, Lecture Notes in Physics vol. 37 (H. Rollnik and K. Dietz, eds.), Springer, Berlin (1975).

    Google Scholar 

  39. J. A. Dixon, Nucl. Phys. B99, 420 (1975).

    Article  ADS  Google Scholar 

  40. W. Siegel, Phys. Lett. 93B, 275 (1980); J. Thierry-Mieg and L. Baulieu, Nucl. Phys. B228, 259 (1985); L. Baulieu and J. Thierry-Mieg, Phys. Lett. 144B, 221 (1983).

    Google Scholar 

  41. M. Asorey and F. Falceto, Global Aspects of Covariant Quantization of Gauge Theories, Harvard preprint HUPT 88/A039.

    Google Scholar 

  42. P. Hirschfeld, Nucl. Phys. B157, 37 (1979); K. Fujikawa, Prog. Theor. Phys. 61, 627 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henneaux, M. (1992). The Antifield-BRST Formalism for Gauge Theories. In: Teitelboim, C., Zanelli, J. (eds) Quantum Mechanics of Fundamental Systems 3. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3374-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3374-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6489-4

  • Online ISBN: 978-1-4615-3374-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics