Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 321))

Abstract

Phosphoinositides are a class of membrane phospholipids that serve as precursors to the important second messengers inositol(1,4,5)P3 and diacylglycerol, which mediate the release of intracellular calcium and the activation of protein kinase C, respectively.1,2 The key event in the production of these signals is the hydrolysis of phoshatidylinositol(4,5)P2 by phospholipase C. This traditional pathway of signal transduction is utilized by activated receptors for a variety of diverse stimuli, including hormones, growth factors, neurotransmitters and chemotactic factors. Recently, several new pathways of phosphoinositide (PI) metabolism have been discovered in cells stimulated by growth factors or transformed by certain oncogene products.1,3 These new pathways branch off the classical routes of PI hydrolysis and appear to be linked to poorly understood events in cellular regulation that are distinct from calcium release and C-kinase activation. In this discussion, several of these new aspects of PI metabolism relating to cell transformation will be illustrated, and a model for neoplastic transformation by the src tyrosine kinase oncogene, will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Berridge and R.F. Irvine, Inositol phosphates and cell signalling, Nature. 341:197–205 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. V.S. Bansal and P.W. Majerus, Phosphatidylinositol-derived precursors and signals, Annu. Rev. Cell Biol. 6:41–67 (1990).

    Article  PubMed  CAS  Google Scholar 

  3. L.C. Cantley, K.R. Auger, C. Carpenter, B. Duckworth, A. Graziani, R. Kapeller, and S. Soltoff, Oncogenes and signal transduction, Cell. 64:281–302 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. B.J. Drucker, H.J. Mamon, and T.M. Roberts, Oncogenes, growth factors and signal transduction, N Eng J Med. 321:1383–91 (1989).

    Article  Google Scholar 

  5. J.T. Parsons and M.J. Weber, Genetics of SrC: structure and functional organization of a protein tyrosine kinase, Curr Top Microbiol Immunol. 147:80–127 (1989).

    Google Scholar 

  6. C.A. Koch, D. Anderson, M.F. Moran, C. Ellis, and T. Pawson, SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins, Science. 252: 668–74. (1991)

    Article  PubMed  CAS  Google Scholar 

  7. I.G. Macara, Oncogenes and cellular signal transduction, Physiol Rev. 69: 797–820. (1989)

    PubMed  CAS  Google Scholar 

  8. Y. Sugimoto, M. Whitman, L.C. Cantley, and R.L. Erikson, Evidence that the Rous sarcoma virus transforming gene product phosphorylates phospatidylinositol and diacyglyccrol, Proc Natl Acad Sci USA. 81:2117–21 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. R.M. Johnson, W.J. Wasilenko, R.R. Mattingly, M.J. Weber, and J.C. Garrison, Fibroblasts transformed with v-src show enhanced formation of an inositol tetrakisphosphate, Science. 246: 121–24 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. R.R. Mattingly, L.R. Stephens, R.F. Irvine, and J.C. Garrison, Effects of transformation with the v-src oncogene on inositol phosphate metabolism in rat-I cells: d-myo-inositol 1,4,5,6-tetrakisphosphate is increased in v-src transformed fibroblasts and can be synthesized from d-myo-inositol 1,3,4-trisphosphate in cytosolic extracts, J Biol Chem. 266:15144–53 (1991).

    PubMed  CAS  Google Scholar 

  11. M. Whitman, D. Kaplan, T. Roberts, and L. Cantley, Evidence for two distinct phosphatidylinositol kinases in fibroblasts: implications for cellular transformation, Biochem J. 247:165–74 (1987).

    PubMed  CAS  Google Scholar 

  12. M. Whitman, C.P. Downes, T. Keeler, T. Keller, and L. Cantley, Type 1 phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate, Nature. 332: 644–46 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. M. Otsu, I. Hiles, I. Gout, M.J. Fry, F. Ruiz-Larrea, G. Panayotou, A. Thompson, R. Dhand, et. al, Characterization of two 85kD. proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase, Cell. 65:91–104 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. L.R. Stephens, P.T. Hawkins, N. Carter, S.B. Chawala, A.J. Morris, et al, L-myo-inositol 1,4,5,6-tetrakisphosphate is present in both mammalian and avian cells, Biochem J. 249:271–82 (1988).

    PubMed  CAS  Google Scholar 

  15. F.S. Menniti, K.G. Oliver, K. Nogimori, J.F. Obie, S. Shears, and J.W. Putney Jr., Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells. Stimulation by bombesin of myoinositol 1,3,4,5,6-pentakisphosphate to myo-inositol 3,4,5,6-tetrakisphosphate, J Biol Chem. 265: 11167–76 (1990).

    PubMed  CAS  Google Scholar 

  16. T. Balla, L. Hunyady, A.J. Baukal, and K.J. Catt, Structures and metabolism of inositol tetrakisphosphates and inositol pentakisphosphates in bovine adrenal glomerulosa cells, J Biol Chem. 264: 9386–90 (1989).

    PubMed  CAS  Google Scholar 

  17. P. Grondin, M. Plantavid, C. Sultan, et.al, Interaction of p60c-src, phospholipase C. inositol-lipid and diacylglycerol with the cytoskeletons of thrombin-stimulated platelets. J Biol Chem. 266: 15705–09 (1991).

    PubMed  CAS  Google Scholar 

  18. A. Sjolander, K. Yamamoto, B.E. Huber, and E.G. Lapetina, Association of p21ras with phosphatidylinositol 3-kinase, J Biol Chem. 88:7908–12 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wasilenko, W.J. (1992). Phosphoinositides and Cell Growth. In: Vinik, A.I., Sirman, D.J. (eds) Pancreatic Islet Cell Regeneration and Growth. Advances in Experimental Medicine and Biology, vol 321. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3448-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3448-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6526-6

  • Online ISBN: 978-1-4615-3448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics