Skip to main content

Abstract

Antithrombin III (ATIII) is an important endogenous anticoagulant protein which functions at the level of serine protease inhibition. ATIII inactivates thrombin, factor Xa and other enzymes in the intrinsic coagulation pathway, thereby decreasing fibrin formation. Inhibition occurs when stable, stoichiometric ATIII-enzyme complexes form as a result of interactions between the reactive site of ATIII and the active site of the protease target.1 The rate of complex formation increases substantially in the presence of heparan sulfate proteoglycans on the surface of the vascular endothelium in vivo,2 or after addition of heparin in vitro or pharmaceutically.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg RD, Damus PS: The purification and mechanism of action of antithrombin-heparin cofactor. J. Biol. Chem. 248: 6490–6505, 1973

    PubMed  CAS  Google Scholar 

  2. Marcum JA, Rosenberg RD: Anticoagulantly active heparan sulfate proteoglycan and the vascular endothelium. Seminars in Thrombosis and Haemostasis 13: 464–474, 1987

    Article  CAS  Google Scholar 

  3. Petersen TE, Dudek-Wojciechowska G, Sottruup-Jensen L, Magnusson S: Primary structure of antithrombin-III (heparin cofactor). Partial homology between alantitrypsin and antithrombin-III, in Collen D, Wiman B, Verstraete M (eds): The physiological inhibitors of coagulation and fibrinolysis. Elsevier-North Holland Biomedical Press, Amsterdam, 1979, pp. 43–54

    Google Scholar 

  4. Bock SC, Wion K, Vehar G, Lawn RM: Cloning and expression of the endogenous anticoagulant protein, human antithrombin III. Nucl. Acids. Res. 10: 8113–8125, 1982

    Article  PubMed  CAS  Google Scholar 

  5. Chandra T, Stackhouse R, Kidd VJ, Woo SLC: Isolation and sequence characterization of a cDNA clone of human antithrombin III. Proc. Natl. Acad. Sci., USA 80: 1845–1848, 1983

    Article  PubMed  CAS  Google Scholar 

  6. Franzen LE, Svensson S, Larm O: Structural studies on the carbohydrate portion of human antithrombin III. J. Biol. Chem. 255: 5090, 1980

    PubMed  CAS  Google Scholar 

  7. Mizuochi T, Fujii J, Kurachi K, Kobata A: Structural studies of the carbohydrate moiety of human antithrombin III. Arch. Biochem. Biophys. 203: 458, 1980

    Article  PubMed  CAS  Google Scholar 

  8. Collen D, Schetz J, DeCock F, Holmer E, Verstraete M: Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis of heparin administration. Eur. J. Clin. Invest. 7: 27–35, 1977

    Article  PubMed  CAS  Google Scholar 

  9. Conard J, Brosstad F, Larsen ML, Samama M, Abildgaard U: Molar antithrombin concentration in normal human plasma. Haemostasis 13: 363–368, 1983

    PubMed  CAS  Google Scholar 

  10. Thaler E, Lechner K: Antithrombin III deficiency and thromboembolism. Clin. in Haematol. 10: 369–390, 1981

    CAS  Google Scholar 

  11. Pizzo SV: Serpin receptor 1: a hepatic receptor that mediates the clearance of antithrombin III-proteinase complexes. Am. J. Med. 87: 10–14, 1989

    Article  Google Scholar 

  12. Carrell RW, Pemberton PA, Boswell DR: The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harbor Symp. Quant. Biol. LII: 527–535, 1987

    Google Scholar 

  13. Sugiyama N, Sasaki T, Iwamoto M, Abiko Y: Binding site of a2-plasmin inhibitor to plasminogen. Biochim. Biophys. Acta 952: 1–7, 1988

    Article  PubMed  CAS  Google Scholar 

  14. Hortin GL, Trimpe BL, Fok KF: Plasmin’s peptide binding specificity: characterization of ligand sites in a2 — antiplasmin. Thromb. Res. 54: 621–632, 1989

    Article  PubMed  CAS  Google Scholar 

  15. Owen WG: Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim. Biophys. Acta 405: 380–387, 1975

    Article  PubMed  CAS  Google Scholar 

  16. Fish WW, Bjork I: Release of a two-chain form of antithrombin from the antithrombin-thrombin complex. Eur. J. Biochem 101: 31–38, 1979

    Article  PubMed  CAS  Google Scholar 

  17. Jornvall H, Fish WW, Bjork I: The thrombin cleavage site in bovine antithrombin. FEBS Lett. 106: 358–362, 1979

    Article  PubMed  CAS  Google Scholar 

  18. Loebermann H, Tokuoka R, Deisenhofer J, Huber R: Human al-proteinase inhbitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. Mol. Biol. 177: 531–556, 1984

    Article  PubMed  CAS  Google Scholar 

  19. Huber R, Carrell RW: Implications of the three-dimensional structure of al-antitrypsin for structure and function of serpins. Biochem. 28: 8951–8966, 1989

    Article  CAS  Google Scholar 

  20. Samama JP, Delarue M, Mourey L, Choay J, Moras D: Crystallization and preliminary crystallographic data for bovine antithrombin III. J. Mol. Biol. 210: 877–879, 1989

    Article  PubMed  CAS  Google Scholar 

  21. Brennan SO, Borg JY, George PM, Soria C, Soria J, Caen J, Carrell RW: New carbohydrate site in mutant antithrombin (7-ile > asn) with decreased heparin affinity. FEBS Lett. 237: 118–122, 1988

    Article  PubMed  CAS  Google Scholar 

  22. Borg JY, Brennan SO, Carrell RW, George P, Perry DJ, Shaw J: Antithrombin Rouen-IV 24 Arg > Cys. The amino terminal contribution to heparin binding. FEBS Lett. 266: 163–166, 1990

    Article  PubMed  CAS  Google Scholar 

  23. Chang JY, Tran TH: Antithrombin III Basel: Identification of a pro-leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. J. Biol. Chem. 261: 1174–1176, 1986

    PubMed  CAS  Google Scholar 

  24. Molho-Sabatier P, Aiach M, Gaillard I, Fiessinger JN, Fischer AM, Chadeuf G, Clauser E: Molecular characterization of seven ATIII variants using PCR. Identification of a new mutation: 384 Ala-Pro. J. Clin. Invest. 83: 1236–1242, 1989

    Article  Google Scholar 

  25. Daly M, Ball R, O’Meara A, Hallinan FM: Identification and characterisation of an antithrombin III mutant (AT Dublin 2) with marginally decreased heparin activity. Thromb. Res. 56: 503–513, 1989

    Article  PubMed  CAS  Google Scholar 

  26. Koide T, Odani S, Takahashi K, Ono T, Salmagawa N: Antithrombin III Toyama: replacement of arginine-47 by cysteine in hereditary abnormal antithrombin III that lacks heparin binding ability. Proc. Natl. Acad. Sci., USA 81: 289, 1984

    Article  PubMed  CAS  Google Scholar 

  27. Duchange N, Chasse JF, Cohen GN, Zakin MM: Molecular characterization of the antithrombin III Tours deficiency. Thromb. Res. 45: 115–121, 1987

    Article  PubMed  CAS  Google Scholar 

  28. Brunei F, Duchange N, Fischer AM, Cohen GN, Zakin MM: Antithrombin III Alger: an new case of arg47> cys mutation. A. J. Hemat. 25: 223–224, 1987

    Article  Google Scholar 

  29. Owen MC, Shaw GJ, Grau E, Foncuberta J, Carrell RW, Boswell DR: Molecular characterization of antithrombin Barcelona-2: 47 arginine to cysteine. Thromb. Res. 55: 451–457, 1989

    Article  PubMed  CAS  Google Scholar 

  30. Owen MC, Borg JY, Soria C, Soria J, Caen J, Carrell RW: Heparin binding defect in a new antithrombin III variant: Rouen, 47 arg to his. Blood 69: 1275–1279, 1987

    PubMed  CAS  Google Scholar 

  31. Caso R, Lane DA, Thomson E, Zangouras D, Panico M, Morris H, Olds RJ, Thein SL, Girolami A: Antithrombin Padua I: Impaired heparin binding caused by an arg-47 to his (CGT to CAT) substitution. Thromb. Res. 58: 185–190, 1990

    Article  PubMed  CAS  Google Scholar 

  32. Borg JY, Owen MC, Soria C, Soria J, Caen J, Carrell RW: Proposed heparin binding site in antithrombin based on arginine 47: a new variant Rouen-II, 47 arg to ser. J. Clin. Invest. 1292–1296, 1988

    Google Scholar 

  33. Devraj-Kizuk R, Chui DHK, Prochownik EV, Carter CJ, Ofosu FA, Blajchman MA: Antithrombin III Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity. Blood 72: 1518–1523, 1988

    PubMed  CAS  Google Scholar 

  34. Perry DJ, Harper PL, Fairham S, Daly M, Carrell RW: Antithrombin Cambridge, 384 Ala to Pro: a new variant identified using the polymerase chain reaction. FEBS Lett. 254: 174–176, 1989

    Article  PubMed  CAS  Google Scholar 

  35. Erdjument H, Lane DA, Panico M, DiMarzo V, Morris HR: Single amino acid substitutions in the reactive site of antithrombin leading to thrombosis. J. Biol. Chem. 263: 5589–5593, 1988

    PubMed  CAS  Google Scholar 

  36. Owen MC, Beresford CH, Carrell RW: Antithrombin Glasgow, 393 arg to his: a P1 reactive site variant with increased heparin affinity but no thrombin inhibitory activity. FEBS Letts. 231: 317–320, 1988

    Article  CAS  Google Scholar 

  37. Lane DA, Erdjument H, Flynn A, DiMarzo V, Panico M, Morris HR, Greaves M, Dolan G, Preston FE: Antithrombin Sheffield: amino acid substitution at the reactive site (arg 393 to his) causing thrombosis. Brit. J. Heamatol. 71: 91–96, 1989

    Article  CAS  Google Scholar 

  38. Erdjument H, Lane DA, Panico M, DiMarzo V, Morris HR, Bauer K, Rosenberg RD: Antithrombin Chicago, amino acid substitution of arginine 393 to histidine. Thromb. Res. 54: 613–619, 1989

    Article  PubMed  CAS  Google Scholar 

  39. Erdjument H, Lane DA, Ireland H, DiMarzo V, Panico M, Morris HR, Tripodi A, Mannucci PM: Antithrombin Milano, single amino acid substitution at the reactive site, arg-393 to cys. Thromb. Haemost. 60: 471–475, 1988

    PubMed  CAS  Google Scholar 

  40. Lane DA, Erdument H, Thompson E, Panico M, DiMarzo V, Morris HR, Leone G, DeStefano V, Thein SL: A novel amino acid substitution in the reactive site of a congenital variant antithrombin. Antithrombin Pescara, arg-393 to pro, caused by a CGT to CCT mutation. J. Biol. Chem. 264: 10020–10204, 1989

    Google Scholar 

  41. Stephens AW, Thalley BS, Hirs CHW: Antithrombin III Denver, a reactive site variant. J. Biol. Chem. 262: 1044–1048, 1987

    PubMed  CAS  Google Scholar 

  42. Olds RJ, Lane D, Caso R, Tripodi A, Mannucci PM, Thein SL: Antithrombin III Milano 2: a single base substitution in the thrombin binding domain detected with PCR and direct genomic sequencing. Nucl. Acids Res. 17: 10511, 1989

    Article  PubMed  CAS  Google Scholar 

  43. Bock SC, Silbermann JA, Wikoff W, Abildgaard U, Hultin MB: Identification of a threonine for alanine substitution at residue 404 of antithrombin III Oslo suggests integrity of the 404-407 region is important for maintaining normal plasma inhibitor levels. Thromb. Haemostas. 62: 494A, 1989

    Google Scholar 

  44. Nakagawa M: Antithrombin III deficiency and its molecular analysis. XIIth Congress of ISTH, Kyoto Satellite Symposium, August 27–28, 1989

    Google Scholar 

  45. Bock SC, Marrinan JA, Radziejewska E: Antithrombin III Utah: Proline-407 to leucine mutation in a highly conserved region near the inhibitor reactive site. Biochem. 27: 6171–6178, 1988

    Article  CAS  Google Scholar 

  46. Perry DJ, Carrell RW: CpG dinucleotides are “hotspots” for mutation in the antithrombin III gene. Twelve variants identified using the polymerase chain reaction. Mol. Biol. Med. 6: 239–243, 1989

    PubMed  CAS  Google Scholar 

  47. Bird AP: DNA methylation and the frequency of CpG in animal DNA. Nucl. Acids Res. 8: 1499–1504, 1980

    Article  PubMed  CAS  Google Scholar 

  48. Giddings JC: Molecular Genetics and Immunoanalysis in Blood Coagulation. Ellis Horwood Ltd., Chichester, England. 1988

    Google Scholar 

  49. Blackburn MN, Smith RL, Carson J, Sibley CC: The heparin-binding site of antithrombin III: identification of a critical tryptophan in the amino acid sequence. J. Biol. Chem. 259: 939–941, 1984

    PubMed  CAS  Google Scholar 

  50. Carrell RW, Christey PB, Boswell DR: Serpins: Antithrombin and other inhibitors of coagulation and fibrinolysis, Evidence from amino acid sequences, in Verstraete M, Vermylen J, Lijnen HR, Arnout J (eds): Thrombosis and Haemostasis 1987. Leuven University Press, 1987

    Google Scholar 

  51. Brennan SO, George PM, Jordan RE: Physiological variant of antithrombin III lacks carbohydrate side chain at asn 135. FEBS Lett. 219: 431–436, 1987

    Article  PubMed  CAS  Google Scholar 

  52. Peterson CB, Noyes CM, Pecon JM, Church FC, Blackburn MN: Identification of a lysyl residue in antithrombin which is essential for heparin binding. J. Biol. Chem. 262: 8061–8065, 1987

    PubMed  CAS  Google Scholar 

  53. Liu CS, Chang JY: The heparin binding site of human antithrombin III. J. Biol. Chem. 262: 17356–17361, 1987

    PubMed  CAS  Google Scholar 

  54. Chang JY: Binding of heparin to human antithrombin III activates selective chemical modification at lysine 236. Lys-107, lys-125 and lys 136 are situated within the heparin binding site of antithrombin III. J. Biol. Chem. 264: 3111–3115, 1989

    PubMed  CAS  Google Scholar 

  55. Owen MC, Brennan SO, Lewis JH, Carrell RW: Mutation of antitrypsin to antithrombin. al-antitrypsin Pittsburgh (358 met > arg), a fatal bleeding disorder. N. Engl. J. Med. 309: 694–698, 1983

    Article  PubMed  CAS  Google Scholar 

  56. Stephens AW, Siddiqui A, Hirs CHW: Site-directed mutagenesis of the reactive center (serine 394) of antithrombin III. J. Biol. Chem. 263: 15849–15852, 1988

    PubMed  CAS  Google Scholar 

  57. Bock SC, Skriver K, Nielsen E, Thogersen HC, Wiman B, Donaldson VH, Eddy RL, Marrinan J, Radziejewska E, Huber R, Shows TB, Magnusson S: Human C1 inhibitor: primary structure, cDNA cloning and chromosomal localization. Biochem. 25: 4292–4301, 1986

    Article  CAS  Google Scholar 

  58. Levy NJ, Ramesh N, Cicardi M, Harrison RA, Davis AE: Type II hereditary angioneurotic edema that may result from a single nucleotide change in the codon for alanine-436 in the C1 inhibitor gene. Proc. Natl. Acad. Sci., USA 87: 265–268, 1990

    Article  PubMed  CAS  Google Scholar 

  59. Holmes WE, Lijnen HR, Nelles L, Kluft C, Nieuwenhuis HK, Rijken DC, Collen D: a2-antiplasmin Enschede: alanine insertion and abolition of plasmin inhibitory activity. Science 238: 209–211, 1987

    Article  PubMed  CAS  Google Scholar 

  60. Bruch M, Weiss V, Engel J: Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. J. Biol. Chem. 263: 16626–16630, 1988

    PubMed  CAS  Google Scholar 

  61. Gettins P, Hartens JB: Properties of thrombin — and elastase-modified human antithrombin III. Biochem. 27: 3634–3639, 1988

    Article  CAS  Google Scholar 

  62. Haris PI, Chapman D, Harrison RA, Smith KF, Perkins SJ: Conformational transition between native and reactive center cleaved forms of al-antitrypsin by Fourier transform infrared spectroscopy and small-angle neutron scattering. Biochem. 29: 1377–1380, 1990

    Article  CAS  Google Scholar 

  63. Gettins P: Absence of large-scale conformational change upon limited proteolysis of ovalbumin, the prototypic serpin. J. Biol. Chem. 264: 3781–3785, 1989

    PubMed  CAS  Google Scholar 

  64. Asakura S, Matsuda M, Yoshida N, Terukina S, Kihara H: A monoclonal antibody that triggers deacylation of an intermediate thrombin-antithrombin III complex. J. Biol. Chem. 264: 13736–13739, 1989

    PubMed  CAS  Google Scholar 

  65. Asakura S, Hirata H, Okazaki H, Hashimoto-Gotoh T, Matsuda M: Hydrophobie residues 382-386 of antithrombin III, ala-ala-ala-ser-thr, serve as an epitope for an antibody which facilitates hydrolysis of the inhibitor by thrombin. J. Biol. Chem. 265: 5135–5138, 1990

    PubMed  CAS  Google Scholar 

  66. Bock SC, Harris JF, Schwartz CE, Ward JH, Hershgold EJ, Skolnick MH: Hereditary thrombosis in a Utah kindred is caused by a dysfunctional antithrombin III gene. Am. J. Hum. Genet. 37: 32-14, 1985

    Google Scholar 

  67. Hultin MB, McKay J, Abildgaard U: Antithrombin Oslo: Type Ib classification of the first reported antithrombin-deficient family, with a review of hereditary antithrombin variants. Thromb. Haemost. 59: 468–473, 1988

    PubMed  CAS  Google Scholar 

  68. Hofker MH, Nukiwa T, van Paassen HMB, Nelen M, Frants RR, Klasen EC, Crystal RG: A Pro > Leu substitution in codon 369 in the alpha-1-antitrypsin variant PIM-Heerlen. Am. J. Hum. Genet. 41: A220, 1987

    Google Scholar 

  69. Egeberg O: Inherited antithrombin deficiency causing thrombophilia. Throm. Diath. Haemorrh. 13: 516–530, 1965

    CAS  Google Scholar 

  70. Grandille S, Aiach M, Lane DA, Vidaud D, Molho-Sabatier P, Caso R, de Moerloose P, Fiessinger JN, Clauser E: Important role of Arg-129 in heparin binding site of antithrombin III: identification of a novel mutation arg-129 to gin. J. Biol. Chem. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bock, S.C. (1991). Antithrombin III Genetics, Structure and Function. In: Hoyer, L.W., Drohan, W.N. (eds) Recombinant Technology in Hemostasis and Thrombosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3698-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3698-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6644-7

  • Online ISBN: 978-1-4615-3698-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics