Skip to main content

Transforming Growth Facfors in Human Prostate Cancer

  • Chapter
Molecular and Cellular Biology of Prostate Cancer

Abstract

Control of epithelial cell growth is poorly understood. Most epithelial cells exist in a tightly controlled state maintained by a balance between the effects of stimulatory and inhibitory factors. Holley proposed that transformed cells escape this control and require less exogenous growth factors in culture than their normal counterparts (1). This observation formed the basis of the autocrine growth control hypothesis whereby transformed cells produce and respond to their own growth factors (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holley R.W. Control of growth of mammalian cells in cell culture. Nature 258:487–490, 1975.

    Article  PubMed  CAS  Google Scholar 

  2. DeLarco J.E. and Todaro G.J. Growth factors from murine sarcoma virus transformed cells. Proc.Natl. Acad. Sci. USA 75:4001–4005, 1978.

    Article  CAS  Google Scholar 

  3. Sporn M.D. and Todaro G.J. Autocrine secretion and malignant transformation of cells. New Engl. J. Med. 303:878–880, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Goustin A.S., Leof E.B., Shipley G.D. and Moses H.L. Growth factors and cancer. Cancer Res. 46:1015–1029, 1986.

    PubMed  CAS  Google Scholar 

  5. Massague J. The TGFβ family of growth and differentiation factors. Cell 49:437–438, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Roberts A.B., Anzano M.A., Wakefield L.M., Roche N.S, Stern D.F. and Sporn M.D. Type β transforming growth factor: a bifunctional regulator of cell growth. Proc. Natl. Acad. Sci. USA 82:119–123, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Stoscheck C.M., King Jr. L.E. Role of epidermal growth factor in carcinogenesis. Cancer Res. 46:1030–1037, 1986.

    PubMed  CAS  Google Scholar 

  8. Rosenthal A., Lindquist P.B., Bringmants, Goeddel D.V., Derynck R. Expression in rat fibroblasts of a human transforming growth factor cDNA results in transformation. Cell 46:301–309, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Finzi E., Fleming T., Segatto O., Pennington C.Y., Bringman T.S., Derynck R., Aaronson S.A. The human transforming growth factor type a coding sequence is not a direct-acting oncogene when overexpressed in NIH 3T3 cells. Proc. Natl. Acad. Sci. (USA) 84:3733–3737, 1987.

    Article  CAS  Google Scholar 

  10. Jakesz R., Smith C.A., Aitken S., Huff K.K., Schuette W., Shackney S. and Lippman M.E. Influence of cell proliferation and all cycle phases on expression of estrogen receptor in MCF-7 breast cancer cells. Cancer Res. 44:619–625, 1984.

    PubMed  CAS  Google Scholar 

  11. Dickson R.B., Lippman M.E. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocr. Rev. 8:29–43, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Kaighn M.E., Naragan K.S., Ohnuki Y., Lechner J.F. and Jones L.W. Establishment and characterization of a human prostate carcinoma cell line (PC-3). Invest. Urol. 17:16–23, 1979.

    PubMed  CAS  Google Scholar 

  13. Stone K.R., Mickey D.D., Wunderli H., Mickey G.H. and Paulson D.F. Isolation of human prostatic carcinoma cell line (DU145). Int. J. Cancer 21:274–281, 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Horoszewicz J.S., Leong S.S., Kawinski E., Karr J.P., Rosenthal H., Chu T.M., Mirand E.A. and Murphy G.P. LNCaP model of human prostatic carcinoma. Cancer Res. 43:1809–1818, 1983.

    PubMed  CAS  Google Scholar 

  15. Wilding G., Valverius E., Knabbe C. and Gelmann E.P. The role of transforming growth factor a in human prostate cancer cell growth. The Prostate 15:1–12, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Wilding G., Freter C.E., Knabbe C., Zugmeier G., Chen M. and Gelmann E.P. Stimulation of human prostate cancer cells in vitro by transforming growth factor alpha. Proc. Endocrine. Soc. 311, 1987.

    Google Scholar 

  17. Wilding G., Zugmeier G., Knabbe C., Clanders K., Valverius E. and Gelmann E.P. The role of transforming growth factors a and P in human prostate cancer cell growth. Amer. Assoc. Cancer Res. 29:957, 1988.

    Google Scholar 

  18. Wilding G., Zugmeier G., Knabbe C., Flanders K. and Gelmann E.P. Inhibition of androgen-independent human prostate cancer cells by TGFβ. UCLA Symposia: Growth Inhibitory and Cytotoxic Polypeptides. J. Cell Biochem. 12A:D127, 1988.

    Google Scholar 

  19. Wilding G., Gelmann E.P. and Freter E.P. Androgens modulate phosphatidyl inositol metabolism in human prostate cancer cells. Amer Assoc Cancer Res 29:976, 1988.

    Google Scholar 

  20. Wilding G., Zugmeier G., Knabbe C., Flanders K. and Gelmann E.P. Differential effects of transforming growth factor P on human prostate cancer cells in vitro. Molec. Endocrinol. 62:79–87, 1989.

    Article  CAS  Google Scholar 

  21. Wilding G., Gelmann E.P. and Freter C.E. Phosphoinositide metabolism in human prostate cancer cells in vitro. The Prostate (in press).

    Google Scholar 

  22. Carpenter G., Cohen S. Human epidermal growth factor and the proliferation of human fibroblasts. J. Cell Physiol. 88:227–237, 1976.

    Article  PubMed  CAS  Google Scholar 

  23. Stoschek C.M., King L.E. Role of epidermal growth factor in carcinogenesis. Cancer Res. 46:1030–1037, 1986.

    Google Scholar 

  24. Derynck R., Roberts A.B., Winkler M.E., Chen E.Y. and Goeddel D.V. Human transforming growth factor-α: precursor structure and expression in E coli. Cell 38:287–297, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Todaro G.J., Gryling C., DeLarco J.E. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. Natl. Acad. Sci. USA 77:5258–5262, 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Downward J., Yarden Y., Mayes E., Scrace G., Totty N., Stockwell P., Ullrich A. and Schlesinger J. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527, 1984.

    Article  PubMed  CAS  Google Scholar 

  27. Freter C.E., Lippman M.E., Cheville A., Zinn S. and Gelmann E.P. Alterations in phosphoinositide metabolism associated with 17-β-estradiol and growth factor treatment of MCF-7 breast cancer cells. Molecular Endocrinology 2:159–166, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Derynck R., Goeddel D.V., Ullrich A., Gutterman J.U., Williams R.D., Bringman T.S., Berger W.H. Synthesis of messenger RNAs for transforming growth factors and and the epidermal growth factor receptor by human tumors. Cancer Research 47:707–712, 1987.

    PubMed  CAS  Google Scholar 

  29. Traish A.M., Wotiz H.H. Prostatic epidermal growth factor receptors and their regulation by androgens. Endocrinology 121:1461–1467, 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Schuurmans A., Bolt J., Mulder E. Androgens stimulate both growth rate and epidermal growth factor receptor activity of the human prostate tumor cell LNCaP. The Prostate 12:55–63, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Fernandez-Pol J.A., Klos D.J., Grant G.A. Purification and biological properties of type α transforming growth factor from mouse transformed cells. Cancer Res 46:5153–5161, 1986.

    PubMed  CAS  Google Scholar 

  32. Connolly J.M., Rose D.P. Human epidermal growth factor (hEGF) binding by the DU145 human prostate cancer cell line, stimulation of mitogenesis and autocrine secretion of EGF-like proteins. The Prostate 15:177–183, 1989.

    Article  PubMed  CAS  Google Scholar 

  33. Clark A.J.L., Ishii S., Rienert N., Merlino G.T., Pastan I. Epidermal growth factor regulates the expression. Proc. Natl. Acad. Sci. (USA) 82:8374–8378, 1985.

    Article  CAS  Google Scholar 

  34. Kudlow J.E., Cheung C.Y.M., Bjorge J.D. Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J. Biological Chemistry 261:4134–4138, 1986.

    CAS  Google Scholar 

  35. Tucker R.F., Branum E.L.., Shipley G.D., Ryan R.J. and Moses H.L. Specific binding to cultured cells of 125I-labeled transforming growth factor β from human platelets. Proc. Natl. Acad. Sci. USA 81:6157–6161, 1984.

    Article  Google Scholar 

  36. Sporn M.B., Roberts A.B., Wakefield L.M., Assoian RK Transforming growth factor-β: biological function and chemical structure. Science 233:532–534, 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Massague J. Epidermal growth factor-like transforming growth factor. J. Biol. Chem. 258:13606–13613, 1983.

    PubMed  CAS  Google Scholar 

  38. Roberts A.B., Anzano M.A., Wakefield L.M., Roche N.S., Stern D.F. and Sporn M.B. Type β transforming growth factor: a bifunctional regulator of cellular growth. Proc. Natl. Acad. Sci. USA 82:119–123, 1985.

    Article  PubMed  CAS  Google Scholar 

  39. Tucker R.F., Shipley G.D., Moses H.L. and Holley R.W. Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science 226:705–709, 1984.

    Article  PubMed  CAS  Google Scholar 

  40. Sporn M.B., Roberts A.B., Wakefield L.M. and deCrombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor beta. J. Cell Biol. 105:1039–1045, 1987.

    Article  PubMed  CAS  Google Scholar 

  41. Massague J. and Kelly B. Transforming growth factor β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Cell Physiol. 128:216–222, 1986.

    Article  PubMed  CAS  Google Scholar 

  42. Wakefield L.M., Smith D.M., Masui T., Harris C.C. and Sporn M.D. Distribution and modulation of the cellular receptor for transforming growth factor beta. J. Cell Biol. 105:965–975, 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Fine A. and Goldstein R.H. The effect of transforming growth factor beta on cell proliferation and collagen formation by lung fibroblasts. J. Cell Biological Chem. 262:3897–3902, 1987.

    CAS  Google Scholar 

  44. Roberts A.B., Sporn M.B., Assoian R.K, Smith J.M., Roche N.S., Wakefield L.M., Heine U.I., Liotta L.A., Falanga V., Kehrl J.H. and Fauci A.S. Transforming growth factor beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83:4167–4174, 1986.

    Article  PubMed  CAS  Google Scholar 

  45. Ignotz R.A. and Massague J. Transforming growth factor beta stimulates the expression of fibronectin and collagen and their incorporation into the J. Biological Chem. 261:4337–4345, 1986.

    CAS  Google Scholar 

  46. Sporn M.B. and Roberts A.B. Peptide growth factors and inflamation, tissue repair and cancer. J Clin. Invest. 78:329–332, 1986.

    Article  PubMed  CAS  Google Scholar 

  47. Edwards D.R., Murphy G., Reynolds J.J., Whitham S.E., Doherty A.J.P., Angel P. and Heath J.K. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 6:1899–1904, 1989.

    Google Scholar 

  48. Kehrl J.H., Roberts A.B., Wakefield L.M., Jakowlew S., Sporn M.B. and Fauci A.S.. Transforming growth factor beta is an important immunomodulatory protein for human B-lymphocytes. J. Immunol. 137:3855–3860, 1986.

    PubMed  CAS  Google Scholar 

  49. Wrann M., Bodmer S., deMartin R., Siepl C., Hofer-Warbinek R., Frei K., Hofer E. and Fontant A. T Cell suppressor factor from human glioblastoma cells is a 125 KD protein closely related to transforming growth factor beta. EMBO J. 6:1633–1636, 1987.

    PubMed  CAS  Google Scholar 

  50. Rook A.H., Kehrl J.H., Wakefield L.M. Roberts A.B., Sporn M.B., Burlington D.B., Land H.C. and Fauci A.S. Effects of tljansforming growth factor beta on the functions of normal killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol. 136:3916–3920, 1986.

    PubMed  CAS  Google Scholar 

  51. Wahl S.M., Hunt D.A. Wakefield L.M., McCartney-Francis N., Wahl L.M., Roberts A.B. and Sporn M.B. Transforming growth factor beta induces monocyte chemotaxis and growth factor,production. Proc. Natl. Acad. Sci. USA 84:5788–5792, 1987.

    Article  PubMed  CAS  Google Scholar 

  52. Assoian R.K., Fleurdelys B.S., Stevenson H.D., Miller P.J., Madtes D.K., Raines E.W., Ross R. and Sporn M.D. Expression and secretion of type beta transforming growth factors by activated human macrophages. Proc. Natl. Acad. Sci. USA 84:6020–6024, 1987.

    Article  PubMed  CAS  Google Scholar 

  53. Muller G., Behrens J., Nussbaumer U., Bohlen P. and Birchmeier W. Inhibitory action of transforming growth factor β on endothelial cells. Proc. Natl. Acad. Sci. USA 84:5600–5604, 1987.

    Article  PubMed  CAS  Google Scholar 

  54. Takehara K., LeRoy E.C. and Grotendorst G.R. TGFβ inhibition of endothelial cell proliferation: alteration of EGF binding and EGF induced growth regulatory gene expression. Cell 49:415–422, 1987.

    Article  PubMed  CAS  Google Scholar 

  55. Pfeilschifter J. and Mundy G.R. Modulation of type beta transforming growth factor activity in bone cultures by osteotropic hormones. Proc. Natl. Acad. Sci. USA 84:2024–2028, 1987.

    Article  PubMed  CAS  Google Scholar 

  56. Centrella M., McCarthy T.L. and Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J. Biological Chem. 262:2869–2874, 1987.

    CAS  Google Scholar 

  57. Knabbe C., Lippman M.E., Wakefield L.M., Flanders K.C., Kasid A., Derynck R. and Dickson R.B. Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428, 1987.

    Article  PubMed  CAS  Google Scholar 

  58. Arteaga C.L., Tandon A.K., VonHoff D.D., and Osborne C.K. Transforming growth factor-β: potential autocrine growth inhibition of estrogen receptor-negative human breast cancer cells. Cancer Res. 48:3898–3904, 1988.

    PubMed  CAS  Google Scholar 

  59. Zugmaier G., Ennis B.W., Deschaure B., Katz D., Knabbe C., Wilding G., Daly P., Lippman M.E. and Dickson R.B. Transforming growth factors type β1 and β2 but not Mullerian inhibiting substancesare equipotent growth inhibitors of human breast cancer cell lines. J. Cell Physio., 141:353–361, 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilding, G. (1991). Transforming Growth Facfors in Human Prostate Cancer. In: Karr, J.P., Coffey, D.S., Smith, R.G., Tindall, D.J. (eds) Molecular and Cellular Biology of Prostate Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3704-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3704-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6647-8

  • Online ISBN: 978-1-4615-3704-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics