Skip to main content

Magnetite Formation During Microbial Dissimilatory Iron Reduction

  • Chapter
Iron Biominerals

Abstract

Magnetite appears to be produced concurrently with the oxidation of organic matter coupled to Fe(III) reduction in a number of anaerobic sedimentary environments (Perry et al., 1973; Baur et al., 1985; Walker, 1984; Elmore et al., 1986; McCabe et al., 1987; Karlin et al., 1987; Lovley and Reynolds, 1987; Ponamperuma, 1972). The preponderance of evidence indicates that, at the pH, temperature, and pressure of most sedimentary environments, most of the Fe(III) reduction is the result of enzymatic reduction of Fe(III) by microorganisms (Kamura et al., 1963; Sørensen, 1982; Munch and Ottow, 1983; Jones et al., 1983; Lovley and Phillips, 1986a; Lovley et al., 1988). However, dissimilatory Fe(III)-reducing microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) were only recently described (Lovley et al., 1987; Lovley and Phillips, 1988; Lovley et al., 1989a; Lovley et al., 1989c). During the initial studies with these Fe(III)-reducing organisms it was discovered that ultrafine-grained magnetite is an endproduct of dissimilatory Fe(III) reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, N. J., and Rippey, B., 1988, Diagenesis of magnetic minerals in the recent sediments of a eutrophic lake, Limnol. Oceanogr., 33:1476–1492.

    Article  CAS  Google Scholar 

  • Arnold, R. G., Olson, T. M., and Hoffman, M. R., 1986, Kinetics and mechanism of dissimilative Fe(III) reduction by Pseudomonas sp. 200, Biotech. and Bioeng., 28:1657–1671.

    Article  CAS  Google Scholar 

  • Banerjee, S. K., and Moskowitz, B. M., 1985, Ferrimagnetic properties of magnetite, p.17–41, in: “Magnetite Biomineralization and Magnetoreception in Organisms,” Kirschvink, J. L., Jones, D. S., and MacFadden, B. J. eds., Plenum Press, New York.

    Chapter  Google Scholar 

  • Baur, M. E., Hayes, J. M., Studley, S. A., and Walter, M. R., 1985, Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersly group of Western Australia, Econom. Geol., 80:270–282.

    Article  CAS  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., and Jannasch, H. W., 1988, Anaerobic magnetite production by a marine, magnetotactic bacterium, Nature, 334:518–519.

    Article  Google Scholar 

  • Bell, P. E., Mills, A. L., and Herman, J. S., 1987, Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction, Appl. Environ. Microbiol., 53:2610–2616.

    PubMed  CAS  Google Scholar 

  • Blakemore, R. P., Short, K. A., Bazylinski, D. A., Rosenblatt, C., and Frankel, R. B., 1985, Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum, Geomicrobiol. J. 4:53–71.

    Article  CAS  Google Scholar 

  • Canfield, D. E., 1989, Reactive iron in marine sediments, Geochim. Cosmochim. Acta, 53:619–632.

    Article  PubMed  CAS  Google Scholar 

  • Canfield, D. E., and Berner, R. A., 1987, Dissolution and pyritization of magnetite in anoxic marine sediments, Geochim. Cosmonhim. Acta, 51:645–659.

    Article  CAS  Google Scholar 

  • Chang, S-B. R., and Kirschvink, J., 1985, Possible biogenic magnetite fossils from the late Miocene Potamida clays of Crete, p.647–669, in: “Magnetite Biomineralization and Magnetoreception in Organisms,” Kirschvink, J. L., Jones, D. S., and MacFadden, B. J. eds, Plenum Press, New York.

    Chapter  Google Scholar 

  • Demitrack, A., 1985, A search for bacterial magnetite in the sediments of Eel Marsh, Woods Hole, Massachusetts, p. 625–645, in: “Magnetite Biomineralization and Magnetoreception in Organisms,” Kirschuink, J. L., Jones, D. S., and MacFadden, B. J., eds., Plenum Press, New York.

    Chapter  Google Scholar 

  • Donovan, T. J., Forgey, R. L., and Roberts, A. A., 1979, Aeromagnetic detection of diagenetic magnetite over oil fields, Am. Assoc. Petrol. Geol. Bull., 63:245–248.

    Google Scholar 

  • Elmore, R. D., Engel, M. H., Crawford, L., Nick, K. Imbus, S., and Sofer, Z., 1987, Evidence for a relationship between hydrocarbons and authigenic magnetite, Nature, 325:428–430.

    Article  CAS  Google Scholar 

  • Frankel, R. B., 1987, Anaerobes pumping iron, Nature, 330:208.

    Article  Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R Cullen D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 43:1075–1090.

    Article  CAS  Google Scholar 

  • Jones, J. G., Gardener, S., and Simon, B. M., 1983, Bacterial reduction of ferric iron in a stratified eutrophic lake, J. Gen Microbial., 129:131–139.

    CAS  Google Scholar 

  • Jones, J. G., Gardener, S., and Simon, B. M., 1984, Reduction of ferric iron by heterotrophic bacteria in lake sediments, J. Gen. Microbiol., 130:45–51.

    CAS  Google Scholar 

  • Kamura, T., Takai, Y., and Ishikawa, K., 1963, Microbial reduction mechanism of ferric iron in paddy soils (part I), Soil Sci. Plant Nutr., 9:171–175.

    Article  Google Scholar 

  • Karlin, R., and Levi, S., 1983, Diagenesis of magnetic minerals in Recent haemipelagic sediments, Nature, 26:327–330.

    Article  Google Scholar 

  • Karlin, R., Lyle, M., and Heath, G. R., 1987, Authigenic magnetite formation in suboxic marine sediments, Nature, 326:490–493.

    Article  CAS  Google Scholar 

  • Lovley, D. R., 1987, Organic matter mineralization with the reduction of ferric iron: a review, Geomicrobiol. J. 5:375–399.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., Siegel, D. I., 1989a, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature, 339:297.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Chappelle, F., and Phillips, E. J. P., 1988, Potential impact of dissimilatory Fe(III)-reducing bacteria on groundwater chemistry, EOS, 69:1182.

    Google Scholar 

  • Lovley, D. R., Chapelle, F., and Phillips, E. J. P., 1989b, Iron-reducing bacteria in geologically old sediments, (manuscript submitted for publication).

    Google Scholar 

  • Lovley, D. R., and Goodwin, S., 1988, Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments, Geochim. Cosmochim. Acta. 52:2993–3003.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1986a, Organic matter mineralization with the reduction of ferric iron in anaerobic sediments, Appl. Environ. Microbiol., 51:683–689.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1986b, Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River, Appl. Environ. Microbiol., 52:751–757.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1987a, Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol., 53:1536–1540.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1987b, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol., 53:2636–2641.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Micrgbiol., 54:1472–1480.

    CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1989, Glucose metabolism in sediments with ferric iron reduction as the terminal electron accepting process, (manuscript submitted for publication).

    Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., and Lonergen, D. J., 1989c, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol., 55:700–706.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Reynolds, R. L., 1987, Magnetite production as an indicator of microbial Fe(III) reduction in anaerobic sediments, EOS, 68:1258.

    Google Scholar 

  • Lovley, D. R., and Stolz, J. F., 1989, Origin of soil magnetite, Nature, 340:106

    Article  Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, G. L., Jr., and Phillips, E. J. P., 1987, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature, 330:252–254.

    Article  CAS  Google Scholar 

  • Maher, B. A., 1986, Characterisation of soils by mineral magnetic measurements, Phys. of the Earth and Planet. Inter., 42:76–92.

    Article  Google Scholar 

  • Mäher, B. A., and Taylor, R. M., 1988, Formation of ultrafine-grained magnetite in soils, Nature, 336:368–370.

    Article  Google Scholar 

  • McCabe, C., Sassen, R., and Saffer, B., 1987, Occurrence of secondary magnetite within biodegraded oil, Geology, 15:7–10.

    Article  CAS  Google Scholar 

  • Moskowitz, B. M., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W., and Lovley, D. R., 1989, Comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria, Geophys. Res. Lett., 16:665–668

    Article  CAS  Google Scholar 

  • Mullins, C. E., 1977, Magnetic susceptibility of the soil and its significance in soil science — a review, J. Soil Sci., 28:223–246.

    Article  CAS  Google Scholar 

  • Munch, J. C., and Ottow, J. C. G., 1983, Reductive transformation mechanism of ferric oxides in hydromorphic soils, Ecol. Bull., 35:383–394.

    CAS  Google Scholar 

  • Myers, C. R., and Nealson, K. H., 1988, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor, Science, 240:1139–1321.

    Article  Google Scholar 

  • Perry, E. C., Jr., Tan, F. C. and Morey, G. B., 1973, Geology and stable isotope geochemistry of the Biwabik iron formation, Northern Minnesota, Econom. Geol., 68:1110–1125.

    Article  CAS  Google Scholar 

  • Peterson, N., von Dobeneck, T., and Vali, H., 1986, Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean, Nature, 320:611–615.

    Article  Google Scholar 

  • Ponnamperuma, F. N., 1972, The chemistry of submerged soils, Adv. Aaron., 24:29–96.

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., 1983, Rates of biogeochemical processes in anoxic sediments, Annu. Rev. Earth Planet. Sci., 11:269–298.

    Article  CAS  Google Scholar 

  • Roberts, J. L., 1947, Reduction of ferric hydroxide by strains of Bacillus polymyxa, Soil Sci., 63:135–140.

    Article  CAS  Google Scholar 

  • Schwertmann, U., 1988, Occurrence and formation of iron oxides in various pedoenviroments, pp. 267–396. in: “Iron in Soils and Clay minerals,” Stucki, J. W., Goodman, B. A., and Schwertmann, U., eds., D. Reidel Publishing Company, Boston.

    Chapter  Google Scholar 

  • Semple, K. M., and Westlake, D. W. S., 1987, Characterization of iron-reducing Alteromonas putrefaciens strains isolated from oil field fluids. Can. J. Microbiol. 33:366–371.

    Article  CAS  Google Scholar 

  • Sørensen, J., 1982, Reduction of ferric iron in anaerobic marine sediment and interaction with nitrate and sulfate, Appl. Environ. Microbiol., 43:319–324.

    PubMed  Google Scholar 

  • Sparks, N. H. C., Mann, S., Lovley, D. R., and Frankel, R. B., 1989, Magnetite produced by dissimilatory iron-reducing bacteria, (manuscript submitted for publication).

    Google Scholar 

  • Tamaura, Y., Ito, K., and Katsura, T., 1983, Transformation of γ-FeO(OH) to Fe3O4 by adsorption of Iron (II) ion on γ- FeO(OH), J. Chem. Soc. Dalton Trans., 1983:189–194.

    Article  Google Scholar 

  • Tugel, J. B., Hines, M. E., and Jones, G. E., 1986, Microbial iron reduction by enrichment cultures isolated from estuarine sediments, Appl. Environ. Microbiol., 52:1167–1172.

    PubMed  CAS  Google Scholar 

  • Walker, J. C. G., 1984, Suboxic diagenesis in banded iron formations, Nature, 309:340–342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lovley, D.R. (1991). Magnetite Formation During Microbial Dissimilatory Iron Reduction. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics