Skip to main content

The Anderson Metal — Insulator Transition: Incommensurate Versus Disordered Systems

  • Chapter
Geometry and Thermodynamics

Part of the book series: NATO ASI Series ((NSSB,volume 229))

  • 240 Accesses

Abstract

Much work has been devoted to the study of quantum transport or wave propagation in disordered systems in connection with the phenomenon of Anderson localisation 1 and the assosiated metal insulator transition2. The electron properties and lattice dynamics of modulated structures and quasicrystals have also been considered3. In this context Aubry and Andre4 studied the discrete Harper’s equation used to describe the quantum theory of an electron confined in a plane with a periodic potential in the plane and a uniform perpendicular magnetic field. These systems are intermediate between periodic and random and they often exhibit an Anderson localization transition with a rich complex scaling behavior5,6. From a duality property it was shown4 that the Anderson transition occurs by breaking of anaiyticity at a critical value of the incommensurate potential strength. The critical properties of incommensurate systems are mostly understood4. The Anderson transition in a random potential is more difficult. Here, I shall demonstrate the extra difficulties, emphasize the common characteristics and point out the differences of the two transitions. I shall also present some recent results by using related techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.W.Anderson, Phys. Rev. 109, 1492 (1958).

    Article  CAS  Google Scholar 

  2. Seealso the reviews in : “Chance and Matter” , Les Houches XLVI,1986,Eds Souletie J., Vannimenous J., and Stora R. (North-Holland 1987)

    Google Scholar 

  3. Abrahams E., Aderson P.W.,Licciardelo P.C. and Ramakrishnan T.V. Phys. Rev. Lett. 42 673 (1979).

    Article  Google Scholar 

  4. See thereviews by Souillard B. in ref.1 p.305 and references there in.

    Google Scholar 

  5. Aubrv S.and Andre G.,Ann.Israel Phys. Soc. 3, 133(1980)

    Google Scholar 

  6. Evangelou S.N. in “Disordered Systems and New Materials”,andreferences threin.Evangelou S.N., J.Phys. C20, L295 (1987)

    Google Scholar 

  7. WegnerF.J., Z.Phys. B25 327(1976), B 35 207 (1979) Physics Reports 67, 15 (1980); ibid Nucl. Phys.B270, 1 (1980),

    Google Scholar 

  8. Mac KinnonA. and Kramer B.Z.Phys. B 53 1 (1983),

    Article  Google Scholar 

  9. Pichard J-L. and Sarma G. Z.Phys. C 14 L 127, L617(1981)

    Google Scholar 

  10. AtshulerB.L., Proc. 18thInt. Conf. on Low Temperature Phys. Kyoto (1987) Jap. Journal of Appl.Phys.Supp. 26,1938 (1987).

    Google Scholar 

  11. Lee P.A. and Stone A.D., Phys. Rev. Lett. 55 1622(1985)

    Article  CAS  Google Scholar 

  12. Aubry S. and Ouemerais P. in : Low Dimensional Electronic Properties of Molybdaenium Bronzes andOxides Eds. C.Schlenker RiedelPubl. Co (1988) .

    Google Scholar 

  13. Tang C.and Kohmoto M.,Phys. Rev. B 34 , 2041 (1986),

    Article  CAS  Google Scholar 

  14. see also Siebesma A.R. and Pietronero L.,Europhys. Lett. 4, 597 (1987)

    Article  CAS  Google Scholar 

  15. SoucoulisC. and Economou E.N.,Phys. Rev. Lett 52, 565 (1984)

    Article  Google Scholar 

  16. ChalkerJ.T. and Daniell G.J.,Phys. Rev. Lett 61, 593 (1988),

    Article  Google Scholar 

  17. ChalkerJ.T. Phys. C20,L493 (1987)

    Google Scholar 

  18. T.C.Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B. Shairman, Phys. Rev. A33, 1141 (1986)

    Google Scholar 

  19. Evangelou S.N., J.Phys.C20, L295, (1987)

    Google Scholar 

  20. Evangelou S.N. (submitted)

    Google Scholar 

  21. G.Palabin G. and Vulpiani A., Phys. Rev. B35, 2015 (1987); ibid Physics Reports 156, 147 (1989)

    Google Scholar 

  22. Altshuler B.L., Kravtsov V.E.and LernerI.V.,Phys. Lett A134, 488(1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evangelou, S.N. (1990). The Anderson Metal — Insulator Transition: Incommensurate Versus Disordered Systems. In: Tolédano, JC. (eds) Geometry and Thermodynamics. NATO ASI Series, vol 229. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3816-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3816-5_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6702-4

  • Online ISBN: 978-1-4615-3816-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics